Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 10029–10038 | Cite as

Acute sensitivity of the killifish Nothobranchius furzeri to a combination of temperature and reference toxicants (cadmium, chlorpyrifos and 3,4-dichloroaniline)

  • Charlotte Philippe
  • Arnout F. Grégoir
  • Eli S. J. Thoré
  • Luc Brendonck
  • Gudrun De Boeck
  • Tom Pinceel
Research Article


Aquatic organisms of inland waters are often subjected to a combination of stressors. Yet, few experiments assess mixed stress effects beyond a select group of standard model organisms. We studied the joint toxicity of reference toxicants and increased temperature on the turquoise killifish, Nothobranchius furzeri, a promising model for ecotoxicological research due to the species’ short life cycle and the production of drought-resistant eggs. The acute sensitivity of the larval stage (2dph) to three compounds (cadmium, 3,4-dichloroaniline and chlorpyrifos) was tested in combination with a temperature increase of 4 °C, mimicking global warming. Dose-response relationships were used to calculate 96h-LC50 of 0.28 mg/L (24 °C) and 0.39 mg/L (28 °C) for cadmium, 96h-LC50 of 9.75 mg/L (24 °C) and 6.61 mg/L (28 °C) for 3,4-dichloroaniline and 96h-LC50 of 15.4 μg/L (24 °C) and 14.2 μg/L (28 °C) for chlorpyrifos. After 24 h of exposure, the toxicity of all tested compounds was exacerbated under increased temperature. Furthermore, the interaction effect of cadmium and temperature could be predicted by the stress addition model (SAM). This suggests the applicability of the model for fish and at the same time indicates that the model could be suitable to predict effects of temperature-toxicant interactions.


Nothobranchius furzeri Acute toxicity Multiple stressors Synergism Fish model Stress addition model 



We would like to thank the group of M. Reichard (Institute of Vertebrate Biology) for providing the parental fish. Also, we are grateful to the SPHERE group of the UAntwerpen and the Department of crop protection of the Ugent for analysis of water samples. We also want to thank Matthias Liess (Helmholtz Centre for Environmental Research) for his help and advice during the validation of the SAM model.

Funding information

Support during this project was provided by the Excellence Center ‘Eco and socio-evolutionary dynamics’ (PF/10/007) of the KU Leuven Research Fund. AFG (11Q0516N) and EST (SB151323) were funded as doctoral and TP (12F0716N) as post-doctoral fellow by FWO Flanders (Fonds Wetenschappelijk Onderzoek).

Compliance with ethical standards

All experiments and methods were approved by the ethical committee of KU Leuven (file numbers: P125/2015, P072/2016 and P173/2016).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11356_2018_1278_MOESM1_ESM.docx (111 kb)
ESM 1 (DOCX 110 kb)


  1. Bartáková V, Reichard M, Janko K, Polačik M, Blažek R, Reichwald K, Cellerino A, Bryja J (2013) Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evol Biol 13(1):196. CrossRefGoogle Scholar
  2. Bednarska AJ, Portka I, Kramarz PE, Laskowski R (2009) Combined effect of environmental pollutants (nickel, chlorpyrifos) and temperature on the ground beetle, Pterostichus oblongopunctatus (Coleoptera: Carabidae). Environ Toxicol Chem 28(4):864–872. CrossRefGoogle Scholar
  3. Bichara D, Calcaterra NB, Arranz S, Armas P, Simonetta SH (2014) Set-up of an infrared fast behavioral assay using zebrafish (Danio rerio) larvae, and its application in compound biotoxicity screening. J Appl Toxicol 34(2):214–219. CrossRefGoogle Scholar
  4. Blažek R, Polačik M, Reichard M (2013) Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo 4(1):24. CrossRefGoogle Scholar
  5. Cellerino A, Valenzano DR, Reichard M (2015) From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev 91(2):511–533. CrossRefGoogle Scholar
  6. Centre ECJR (2006) 3,4-Dichloroaniline (3,4-DCA) summary risk assessment reportGoogle Scholar
  7. Costa LG (2006) Current issues in organophosphate toxicology. Clin Chim Acta 366(1-2):1–13. CrossRefGoogle Scholar
  8. Crossland N (1990) A review of the fate and toxicity of 3, 4-dichloroaniline in aquatic environments. Chemosphere 21(12):1489–1497. CrossRefGoogle Scholar
  9. Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Nair AR, Munters E, Artois TJ, Nawrot T, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23(5):927–940. CrossRefGoogle Scholar
  10. Deb N, Das S (2013) Chlorpyrifos toxicity in fish: a review. Curr World Environ 8:77–84CrossRefGoogle Scholar
  11. Dinh Van K, Janssens L, Debecker S, Stoks R (2014) Temperature-and latitude-specific individual growth rates shape the vulnerability of damselfly larvae to a widespread pesticide. J Appl Ecol 51(4):919–928. CrossRefGoogle Scholar
  12. Freitas JS, Kupsco A, Diamante G, Felicio AA, Almeida EA, Schlenk D (2016) Influence of temperature on the thyroidogenic effects of Diuron and its metabolite 3, 4-DCA in tadpoles of the American bullfrog (Lithobates catesbeianus). Environ Sci Technol 50(23):13095–13104. CrossRefGoogle Scholar
  13. Genade T, Benedetti M, Terzibasi E, Roncaglia P, Valenzano DR, Cattaneo A, Cellerino A (2005) Annual fishes of the genus Nothobranchius as a model system for aging research. Aging Cell 4(5):223–233. CrossRefGoogle Scholar
  14. Giesy JP, Solomon KR, Coats JR, Dixon KR, Giddings JM, Kenaga EE (1999) Chlorpyrifos: ecological risk assessment in north american aquatic environments. Rev Environ Contam Toxicol 1001:495Google Scholar
  15. Gordon CJ (2005) Temperature and toxicology: an integrative, comparative, and environmental approach. CRC press, Boca Raton. CrossRefGoogle Scholar
  16. Green J, Wheeler JR (2013) The use of carrier solvents in regulatory aquatic toxicology testing: practical, statistical and regulatory considerations. Aquat Toxicol 144:242–249CrossRefGoogle Scholar
  17. Grosell M, Blanchard J, Brix K, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84(2):162–172. CrossRefGoogle Scholar
  18. Hallare A, Schirling M, Luckenbach T, Köhler H-R, Triebskorn R (2005) Combined effects of temperature and cadmium on developmental parameters and biomarker responses in zebrafish (Danio rerio) embryos. J Therm Biol 30(1):7–17. CrossRefGoogle Scholar
  19. Heugens EH, Jager T, Creyghton R, Kraak MH, Hendriks AJ, Van Straalen NM, Admiraal W (2003) Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. Environ Sci Technol 37(10):2145–2151. CrossRefGoogle Scholar
  20. Holmstrup M, Bindesbøl AM, Oostingh GJ, Duschl A, Scheil V, Köhler HR, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, Gerhardt A, Laskowski R, Kramarz PE, Bayley M, Svendsen C, Spurgeon DJ (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408(18):3746–3762. CrossRefGoogle Scholar
  21. Humphrey C, Klumpp DW (2003) Toxicity of chlorpyrifos to the early life history stages of eastern rainbowfish Melanotaenia splendida splendida (Peters 1866) in tropical Australia. Environ Toxicol 18(6):418–427. CrossRefGoogle Scholar
  22. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team, Pachauri RK, Meyer LA (eds). IPCC, Geneva, pp 151Google Scholar
  23. Jackson MC, Loewen CJ, Vinebrooke RD, Chimimba CT (2016) Net effects of multiple stressors in freshwater ecosystems: a meta-analysis. Glob Chang Biol 22(1):180–189. CrossRefGoogle Scholar
  24. Janssens L, Stoks R (2013) Fitness effects of chlorpyrifos in the damselfly Enallagma cyathigerum strongly depend upon temperature and food level and can bridge metamorphosis. PLoS One 8(6):e68107. CrossRefGoogle Scholar
  25. Jubb R (1971) A new Nothobranchius (Pisces, Cyprinodontidae) from Southeastern Rhodesia. J Am Killifish Assoc 8:314–321Google Scholar
  26. Kienle C, Köhler H-R, Gerhardt A (2009) Behavioural and developmental toxicity of chlorpyrifos and nickel chloride to zebrafish (Danio rerio) embryos and larvae. Ecotoxicol Environ Saf 72(6):1740–1747. CrossRefGoogle Scholar
  27. Kumar P, Singh A (2010) Cadmium toxicity in fish: an overview. GERF Bull Biosci 1:41–47Google Scholar
  28. Liess M, Foit K, Knillmann S, Schäfer RB, Liess H-D (2016) Predicting the synergy of multiple stress effects. Scientific Reports (Nature Publisher Group) 6:32965. CrossRefGoogle Scholar
  29. Lydy MJ, Belden J, Ternes M (1999) Effects of temperature on the toxicity of M-parathion, chlorpyrifos, and pentachlorobenzene to Chironomus tentans. Arch Environ Contam Toxicol 37:542–547CrossRefGoogle Scholar
  30. Mebane CA, Dillon FS, Hennessy DP (2012) Acute toxicity of cadmium, lead, zinc, and their mixtures to stream-resident fish and invertebrates. Environ Toxicol Chem 31(6):1334–1348. CrossRefGoogle Scholar
  31. Mehler WT, Schuler LJ, Lydy MJ (2008) Examining the joint toxicity of chlorpyrifos and atrazine in the aquatic species: Lepomis macrochirus, Pimephales promelas and Chironomus tentans. Environ Pollut 152(1):217–224. CrossRefGoogle Scholar
  32. Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M (2013) Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem 32(1):49–61. CrossRefGoogle Scholar
  33. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–756. CrossRefGoogle Scholar
  34. Nagel R (2001) DarT: the embryo test with the Zebrafish Danio rerio—a general model in ecotoxicology and toxicology. ALTEX 19:38–48Google Scholar
  35. Noyes PD, McElwee MK, Miller HD, Clark BW, van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986. CrossRefGoogle Scholar
  36. Patra RW, Chapman JC, Lim RP, Gehrke PC, Sunderam RM (2009) Effects of temperature on ventilatory behavior of fish exposed to sublethal concentrations of endosulfan and chlorpyrifos. Environ Toxicol Chem 28(10):2182–2190. CrossRefGoogle Scholar
  37. Patra RW, Chapman JC, Lim RP, Gehrke PC, Sunderam RM (2015) Interactions between water temperature and contaminant toxicity to freshwater fish. Environ Toxicol Chem 34(8):1809–1817. CrossRefGoogle Scholar
  38. Philippe C, Grégoir AF, Janssens L, Pinceel T, De Boeck G, Brendonck L (2017) Acute and chronic sensitivity to copper of a promising ecotoxicological model species, the annual killifish Nothobranchius furzeri. Ecotoxicol Environ Saf 144:26–35. CrossRefGoogle Scholar
  39. Polačik M, Blažek R, Reichard M (2016) Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nat Protoc 11(8):1396–1413. CrossRefGoogle Scholar
  40. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10(12):e0146021. CrossRefGoogle Scholar
  41. Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA (1997) Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16(5):948–967. CrossRefGoogle Scholar
  42. Sassi A, Annabi A, Kessabi K, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of high temperature on cadmium-induced skeletal deformities in juvenile mosquitofish (Gambusia affinis). Fish Physiol Biochem 36(3):403–409. CrossRefGoogle Scholar
  43. Schäfers C, Nagel R (1993) Toxicity of 3, 4-dichloroaniline to perch (Perca fluviatilis) in acute and early life stage exposures. Chemosphere 26(9):1641–1651. CrossRefGoogle Scholar
  44. Shedd TR, Widder MW, Toussaint MW, Sunkel MC, Hull E (1999) Evaluation of the annual killifish Nothobranchius guentheri as a tool for rapid acute toxicity screening. Environ Toxicol Chem 18(10):2258–2261. CrossRefGoogle Scholar
  45. Sinclair BJ, Marshall KE, Sewell MA, Levesque DL, Willett CS, Slotsbo S, Dong Y, Harley CDG, Marshall DJ, Helmuth BS, Huey RB (2016) Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol Lett 19(11):1372–1385. CrossRefGoogle Scholar
  46. Stoks R, Debecker S, Van KD, Janssens L (2015) Integrating ecology and evolution in aquatic toxicology: insights from damselflies. Freshwater Sci 34(3):1032–1039. CrossRefGoogle Scholar
  47. Suedel B, Deaver E, Rodgers J Jr (1996) Experimental factors that may affect toxicity of aqueous and sediment-bound copper to freshwater organisms. Arch Environ Contam Toxicol 30:40–46CrossRefGoogle Scholar
  48. USEPA (2001) 2001 update of ambient water quality criteria for cadmium. Environmental Protection Agency Washington^ eDC DCGoogle Scholar
  49. Vergauwen L, Knapen D, Hagenaars A, Blust R (2013) Hypothermal and hyperthermal acclimation differentially modulate cadmium accumulation and toxicity in the zebrafish. Chemosphere 91(4):521–529. CrossRefGoogle Scholar
  50. Walker CH, Sibly R, Hopkin S, Peakall DB (2012) Principles of ecotoxicology. CRC Press, Boca RatonGoogle Scholar
  51. Ware GW (1983) Pesticides. Theory and application. WH Freeman & Co., San FranciscoGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
  2. 2.Systemic Physiological and Ecotoxicological ResearchUniversity of AntwerpAntwerpBelgium
  3. 3.Centre for Environmental ManagementUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations