Skip to main content

Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology

Abstract

Photocatalytic degradation of toxic organic pollutants in the wastewater using dispersed semiconductor nanophotocatalysts has a number of advantages such as high activity, cost effectiveness, and utilization of free solar energy. However, it is difficult to recover and recycle nanophotocatalysts since the fine dispersed nanoparticles are easily suspended in waters. Furthermore, a large amount of photocatalysts will lead to color contamination. Thus, it is necessary to prepare photocatalysts with easy separation for the reusable application. To take advantage of high photocatalysis activity and reusability, magnetic photocatalysts with separation function were utilized. In this review, the photocatalytic principle, structure, and application of the magnetic-semiconductor nanoheterostructure photocatalysts under solar light are evaluated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Scheme 3
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 4

References

  1. Ai Z, Deng K, Wan Q, Zhang L, Lee S (2010) Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J Phys Chem C 114(14):6237–6242. https://doi.org/10.1021/jp910514f

    CAS  Article  Google Scholar 

  2. Akhundi A, Habibi-Yangjeh A (2015) Novel magnetic gC3N4/Fe3O4/AgCl nanocomposites: facile and large-scale preparation and highly efficient photocatalytic activities under visible-light irradiation. Mater Sci Semicond Process 39:162–171. https://doi.org/10.1016/j.mssp.2015.04.052

    CAS  Article  Google Scholar 

  3. Aljubourya D, Palaniandy P, Aziz H, Feroz S (2016) Comparative study to the solar photo-Fenton, solar photocatalyst of TiO2 and solar photocatalyst of TiO2 combined with Fenton process to treat petroleum wastewater by RSM. J Pet Environ Biotechnol 7:2

    Google Scholar 

  4. Amara D, Grinblat J, Margel S (2012) Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres. J Mater Chem 22(5):2188–2195. https://doi.org/10.1039/C1JM13942H

    CAS  Article  Google Scholar 

  5. An C, Ming X, Wang J, Wang S (2012) Construction of magnetic visible-light-driven plasmonic Fe3O4@SiO2@AgCl:Ag nanophotocatalyst. J Mater Chem 22(11):5171–5176. https://doi.org/10.1039/c2jm16622d

    CAS  Article  Google Scholar 

  6. Augugliaro V, Litter M, Palmisano L, Soria J (2006) The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol C: Photochem Rev 7(4):127–144. https://doi.org/10.1016/j.jphotochemrev.2006.12.001

    CAS  Article  Google Scholar 

  7. Bastami TR, Ahmadpour A (2016) Preparation of magnetic photocatalyst nanohybrid decorated by polyoxometalate for the degradation of a pharmaceutical pollutant under solar light. Environ Sci Pollut Res 23(9):8849–8860. https://doi.org/10.1007/s11356-015-5985-2

    CAS  Article  Google Scholar 

  8. Bastami TR, Entezari MH (2013) High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium. Mater Res Bull 48(9):3149–3156. https://doi.org/10.1016/j.materresbull.2013.04.067

    CAS  Article  Google Scholar 

  9. Bayal N, Jeevanandam P (2013) Synthesis of SiO2@NiO magnetic core–shell nanoparticles and their use as adsorbents for the removal of methylene blue. J Nanopart Res 15:1–15

    Article  CAS  Google Scholar 

  10. Bhukal S, Bansal S, Singhal S (2014) Magnetic Mn substituted cobalt zinc ferrite systems: structural, electrical and magnetic properties and their role in photo-catalytic degradation of methyl orange azo dye. Phys B Condens Matter 445:48–55. https://doi.org/10.1016/j.physb.2014.03.088

    CAS  Article  Google Scholar 

  11. Boumaza S, Boudjemaa A, Bouguelia A, Bouarab R, Trari M (2010) Visible light induced hydrogen evolution on new hetero-system ZnFe2O4/SrTiO3. Appl Energy 87(7):2230–2236. https://doi.org/10.1016/j.apenergy.2009.12.016

    CAS  Article  Google Scholar 

  12. Cai A, Sun Y, Du L, Wang X (2015) Hierarchical Ag2O–ZnO–Fe3O4 composites with enhanced visible-light photocatalytic activity. J Alloys Compd 644:334–340. https://doi.org/10.1016/j.jallcom.2015.03.236

    CAS  Article  Google Scholar 

  13. Cao S, Zhou P, Yu J (2014a) Recent advances in visible light bi-based photocatalysts. Chin J Catal 35:989–1007

    Article  CAS  Google Scholar 

  14. Cao X, Chen Y, Jiao S, Fang Z, Xu M, Liu X, Li L, Pang G, Feng S (2014b) Magnetic photocatalysts with a p–n junction: Fe3O4 nanoparticle and FeWO4 nanowire heterostructures. Nano 6:12366–12370

    CAS  Google Scholar 

  15. Cao C, Xiao L, Chen C, Cao Q (2015a) Magnetically separable Cu2O/chitosan–Fe3O4 nanocomposites: preparation, characterization and visible-light photocatalytic performance. Appl Surf Sci 333:110–118. https://doi.org/10.1016/j.apsusc.2015.02.002

    CAS  Article  Google Scholar 

  16. Cao Y, Li C, Li J, Li Q, Yang J (2015b) Magnetically separable Fe3O4/AgBr hybrid materials: highly efficient photocatalytic activity and good stability. Nanoscale Res Lett 10:1

    Article  CAS  Google Scholar 

  17. Cao Y, Li C, Li J, Li Q, Yang J (2015c) Magnetically separable Fe3O4/AgBr hybrid materials: highly efficient photocatalytic activity and good stability. Nanoscale Res Lett 10(1):251. https://doi.org/10.1186/s11671-015-0952-x

    Article  CAS  Google Scholar 

  18. Casbeer E, Sharma VK, Li X-Z (2012) Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol 87:1–14. https://doi.org/10.1016/j.seppur.2011.11.034

    CAS  Article  Google Scholar 

  19. Chatterjee D, Dasgupta S (2005) Visible light induced photocatalytic degradation of organic pollutants. J Photochem Photobiol C: Photochem Rev 6(2-3):186–205. https://doi.org/10.1016/j.jphotochemrev.2005.09.001

    CAS  Article  Google Scholar 

  20. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107(7):2891–2959. https://doi.org/10.1021/cr0500535

    CAS  Article  Google Scholar 

  21. Chen WJ, Tsai PJ, Chen YC (2008) Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. Small 4(4):485–491. https://doi.org/10.1002/smll.200701164

    CAS  Article  Google Scholar 

  22. Chen G, Desinan S, Nechache R, Rosei R, Rosei F, Ma D (2011) Bifunctional catalytic/magnetic Ni@Ru core–shell nanoparticles. Chem Commun 47(22):6308–6310. https://doi.org/10.1039/c1cc10619h

    CAS  Article  Google Scholar 

  23. Chen X, Dai Y, Liu T, Guo J, Wang X, Li F (2015) Magnetic core–shell carbon microspheres (CMSs)@ZnFe2O4/Ag3PO4 composite with enhanced photocatalytic activity and stability under visible light irradiation. J Mol Catal A Chem 409:198–206. https://doi.org/10.1016/j.molcata.2015.08.021

    CAS  Article  Google Scholar 

  24. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44(10):2997–3027. https://doi.org/10.1016/j.watres.2010.02.039

    CAS  Article  Google Scholar 

  25. Deng Y, Zhao R (2015) Advanced oxidation processes (AOPs) in wastewater treatment. Curr Pollut Rep 1(3):167–176. https://doi.org/10.1007/s40726-015-0015-z

    CAS  Article  Google Scholar 

  26. Dom R, Subasri R, Radha K, Borse PH (2011) Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun 151(6):470–473. https://doi.org/10.1016/j.ssc.2010.12.034

    CAS  Article  Google Scholar 

  27. Dong W, Zhu C (2002) Use of ethylene oxide in the sol–gel synthesis of α-Fe2O3 nanoparticles from Fe (III) salts. J Mater Chem 12(6):1676–1683. https://doi.org/10.1039/b200773h

    CAS  Article  Google Scholar 

  28. Dong S, Cui Y, Wang Y, Li Y, Hu L, Sun J, Sun J (2014) Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem Eng J 249:102–110. https://doi.org/10.1016/j.cej.2014.03.071

    CAS  Article  Google Scholar 

  29. Franquet-Griell H, Medina A, Sans C, Lacorte S (2017) Biological and photochemical degradation of cytostatic drugs under laboratory conditions. J Hazard Mater 323(Pt A):319–328. https://doi.org/10.1016/j.jhazmat.2016.06.057

    CAS  Article  Google Scholar 

  30. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrog Energy 32(14):2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009

    CAS  Article  Google Scholar 

  31. Gibson MA, Hightower JW (1976) Oxidative dehydrogenation of butenes over magnesium ferrite: catalyst deactivation studies. J Catal 41(3):431–439. https://doi.org/10.1016/0021-9517(76)90244-X

    CAS  Article  Google Scholar 

  32. Goswami D (1997) A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection processes. Trans-Am Soc Mech Eng. J Solar Energy Eng 119(2):101–107. https://doi.org/10.1115/1.2887886

    CAS  Article  Google Scholar 

  33. Goswami DY, Trivedi DM, Block SS (1997) Photocatalytic disinfection of indoor air. J Sol Energy Eng 119(1):92–96

  34. Guin D, Baruwati B, Manorama SV (2005) A simple chemical synthesis of nanocrystalline AFe2O4 (A = Fe, Ni, Zn): an efficient catalyst for selective oxidation of styrene. J Mol Catal A Chem 242(1-2):26–31. https://doi.org/10.1016/j.molcata.2005.07.021

    CAS  Article  Google Scholar 

  35. Gutierrez-Mata A, Velazquez-Martínez S, Álvarez-Gallegos A, Ahmadi M, Hernández-Pérez JA, Ghanbari F, Silva-Martínez S (2017) Recent overview of solar photocatalysis and solar photo-Fenton processes for wastewater treatment. Int J Photoenergy 2017:1–27. https://doi.org/10.1155/2017/8528063

    Article  Google Scholar 

  36. Hamad H, El-Latif MA, Kashyout AE-H, Sadik W, Feteha M (2015) Synthesis and characterization of core–shell–shell magnetic (CoFe2O4–SiO2–TiO2) nanocomposites and TiO2 nanoparticles for the evaluation of photocatalytic activity under UV and visible irradiation. New J Chem 39(4):3116–3128. https://doi.org/10.1039/C4NJ01821D

    CAS  Article  Google Scholar 

  37. Han L-H, Liu H, Wei Y (2011) In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol 207(1-3):42–46. https://doi.org/10.1016/j.powtec.2010.10.008

    CAS  Article  Google Scholar 

  38. Hankare P, Patil R, Jadhav A, Garadkar K, Sasikala R (2011) Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite. Appl Catal B Environ 107(3-4):333–339. https://doi.org/10.1016/j.apcatb.2011.07.033

    CAS  Article  Google Scholar 

  39. Hidalgo M, Murcia J, Navío J, Colón G (2011) Photodeposition of gold on titanium dioxide for photocatalytic phenol oxidation. Appl Catal A Gen 397(1-2):112–120. https://doi.org/10.1016/j.apcata.2011.02.030

    CAS  Article  Google Scholar 

  40. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96. https://doi.org/10.1021/cr00033a004

    CAS  Article  Google Scholar 

  41. Huang S, Xu Y, Chen Z, Xie M, Xu H, He M, Li H, Zhang Q (2015a) A core–shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv 5(87):71035–71045. https://doi.org/10.1039/C5RA13403J

    CAS  Article  Google Scholar 

  42. Huang S, Xu Y, Xie M, Xu H, He M, Xia J, Huang L, Li H (2015b) Synthesis of magnetic CoFe2O4/gC3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf A Physicochem Eng Asp 478:71–80. https://doi.org/10.1016/j.colsurfa.2015.03.035

    CAS  Article  Google Scholar 

  43. Ibhadon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3(1):189–218. https://doi.org/10.3390/catal3010189

    CAS  Article  Google Scholar 

  44. Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc 132:17343–17345

    CAS  Article  Google Scholar 

  45. Jang I, You K-E, Kim YC, Oh S-G (2014) Surfactant-assisted preparation of core-shell-type TiO2–Fe2O3 composites and their photocatalytic activities under room light irradiation. Appl Surf Sci 316:187–193. https://doi.org/10.1016/j.apsusc.2014.07.204

    CAS  Article  Google Scholar 

  46. Jiang J, Tang X, Zhou S, Ding J, Zhou H, Zhang F, Zhang D, Fan T (2016) Synthesis of visible and near infrared light sensitive amorphous titania for photocatalytic hydrogen evolution. Green Chem 18(7):2056–2062. https://doi.org/10.1039/C5GC02170G

    CAS  Article  Google Scholar 

  47. Kitano M, Hara M (2010) Heterogeneous photocatalytic cleavage of water. J Mater Chem 20(4):627–641. https://doi.org/10.1039/B910180B

    CAS  Article  Google Scholar 

  48. Kong L, Wang C, Gong F, Zhu W, Zhong Y, Ye X, Li F (2016) Magnetic core–shell nanostructured palladium catalysts for green oxidation of benzyl alcohol. Catal Lett 146(7):1321–1330

  49. Ladj R, Bitar A, Eissa M, Mugnier Y, Le Dantec R, Fessi H, Elaissari A (2013) Individual inorganic nanoparticles: preparation, functionalization and in vitro biomedical diagnostic applications. J Mater Chem B 1(10):1381–1396. https://doi.org/10.1039/c2tb00301e

    CAS  Article  Google Scholar 

  50. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. https://doi.org/10.1021/cr068445e

    CAS  Article  Google Scholar 

  51. Leng C, Wei J, Liu Z, Xiong R, Pan C, Shi J (2013a) Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. J Nanopart Res 15:1–11

    Article  CAS  Google Scholar 

  52. Leng C, Wei J, Liu Z, Xiong R, Pan C, Shi J (2013b) Facile synthesis of PANI-modified CoFe2O4–TiO2 hierarchical flower-like nanoarchitectures with high photocatalytic activity. J Nanopart Res 15(5):1643. https://doi.org/10.1007/s11051-013-1643-0

    Article  CAS  Google Scholar 

  53. Li Z, Lai X, Wang H, Mao D, Xing C, Wang D (2009) General synthesis of homogeneous hollow core−shell ferrite microspheres. J Phys Chem C 113(7):2792–2797. https://doi.org/10.1021/jp8094787

    CAS  Article  Google Scholar 

  54. Li X, Niu C, Huang D, Wang X, Zhang X, Zeng G, Niu Q (2013) Preparation of magnetically separable Fe3O4/BiOI nanocomposites and its visible photocatalytic activity. Appl Surf Sci 286:40–46. https://doi.org/10.1016/j.apsusc.2013.08.139

    CAS  Article  Google Scholar 

  55. Li Z-Q, Wang H-L, Zi L-Y, Zhang J-J, Zhang Y-S (2015) Preparation and photocatalytic performance of magnetic TiO2–Fe3O4/graphene (RGO) composites under VIS-light irradiation. Ceram Int 41(9):10634–10643. https://doi.org/10.1016/j.ceramint.2015.04.163

    CAS  Article  Google Scholar 

  56. Link H, Turchi CS (1991) Cost and performance projections for solar water detoxification systems. Asme Jses Jsme Int Sol Energ Conf 289–294

  57. Liu L, Li Y (2014) Understanding the reaction mechanism of photocatalytic reduction of CO2 with H2O on TiO2-based photocatalysts: a review. Aerosol Air Qual Res 14:453–469

    CAS  Google Scholar 

  58. Liu S, Yu J, Jaroniec M (2011) Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem Mater 23(18):4085–4093. https://doi.org/10.1021/cm200597m

    CAS  Article  Google Scholar 

  59. Liu Y, Yu L, Hu Y, Guo C, Zhang F, Lou XWD (2012a) A magnetically separable photocatalyst based on nest-like γ-Fe2O3/ZnO double-shelled hollow structures with enhanced photocatalytic activity. Nano 4:183–187

    CAS  Google Scholar 

  60. Liu Z, Xu W, Fang J, Xu X, Wu S, Zhu X, Chen Z (2012b) Decoration of BiOI quantum size nanoparticles with reduced graphene oxide in enhanced visible-light-driven photocatalytic studies. Appl Surf Sci 259:441–447. https://doi.org/10.1016/j.apsusc.2012.07.063

    CAS  Article  Google Scholar 

  61. Liu J, Xu J, Che R, Chen H, Liu M, Liu Z (2013) Hierarchical Fe3O4@TiO2 yolk–shell microspheres with enhanced microwave-absorption properties. Chem—Eur J 19(21):6746–6752. https://doi.org/10.1002/chem.201203557

    CAS  Article  Google Scholar 

  62. Liŭ D, Li Z, Wang W, Wang G, Liú D (2016) Hematite doped magnetic TiO2 nanocomposites with improved photocatalytic activity. J Alloys Compd 654:491–497. https://doi.org/10.1016/j.jallcom.2015.09.140

    Article  CAS  Google Scholar 

  63. Liu Y, Yu Z, Peng Z, Xiang G, Sun L, Gong Z, Zhu J, Su D, Liu Y (2016) Degradation of methyl orange by simulated solar light combined with three-dimensional electro-Fenton system. Chin J Environ Eng 10:1727–1734

  64. Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39(6):1183–1189. https://doi.org/10.1016/j.watres.2004.12.033

    CAS  Article  Google Scholar 

  65. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46(8):1222–1244. https://doi.org/10.1002/anie.200602866

    CAS  Article  Google Scholar 

  66. Magara Y, Aizawa T, Matumoto N, Souna F (1994) Degradation of pesticides by chlorination during water purification. Water Sci Technol 30:119–128

    CAS  Google Scholar 

  67. Mahmoodi V, Sargolzaei J (2014a) Photocatalytic abatement of naphthalene catalyzed by nanosized TiO2 particles: assessment of operational parameters. Theor Found Chem Eng 48(5):656–666. https://doi.org/10.1134/S0040579514050194

    CAS  Article  Google Scholar 

  68. Mahmoodi V, Sargolzaei J (2014b) Optimization of photocatalytic degradation of naphthalene using nano-TiO2/UV system: statistical analysis by a response surface methodology. Desalin Water Treat 52(34-36):6664–6672. https://doi.org/10.1080/19443994.2013.861774

    CAS  Article  Google Scholar 

  69. Mahmoodi V, Ahmadpour A, Rohani Bastami T, Hamed Mousavian MT (2017) Facile synthesis of BiOI nanoparticles at room temperature and evaluation of their photoactivity under sunlight irradiation. Photochem Photobiol. https://doi.org/10.1111/php.12832

  70. Malato S, Fernández-Ibáñez P, Maldonado M, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59. https://doi.org/10.1016/j.cattod.2009.06.018

    CAS  Article  Google Scholar 

  71. Manova E, Tsoncheva T, Paneva D, Mitov I, Tenchev K, Petrov L (2004) Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition. Appl Catal A Gen 277(1-2):119–127. https://doi.org/10.1016/j.apcata.2004.09.002

    CAS  Article  Google Scholar 

  72. Marcucci M, Nosenzo G, Capannelli G, Ciabatti I, Corrieri D, Ciardelli G (2001) Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies. Desalination 138(1-3):75–82. https://doi.org/10.1016/S0011-9164(01)00247-8

    CAS  Article  Google Scholar 

  73. Markides H, Rotherham M, El Haj A (2012) Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater 2012:13

    Article  CAS  Google Scholar 

  74. Martyanov IN, Uma S, Rodrigues S, Klabunde KJ (2004) Structural defects cause TiO2-based photocatalysts to be active in visible light. Chem Commun 10(21):2476–2477. https://doi.org/10.1039/b409730k

    Article  CAS  Google Scholar 

  75. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12):5549–5567. https://doi.org/10.3390/ma6125549

    CAS  Article  Google Scholar 

  76. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17(2):1247–1248. https://doi.org/10.1109/TMAG.1981.1061188

    Article  Google Scholar 

  77. Mou F, Xu L, Ma H, Guan J, Chen D-r, Wang S (2012) Facile preparation of magnetic γ-Fe2O3/TiO2 Janus hollow bowls with efficient visible-light photocatalytic activities by asymmetric shrinkage. Nano 4:4650–4657

    CAS  Google Scholar 

  78. Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H (2006) Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res 40(17):3297–3303. https://doi.org/10.1016/j.watres.2006.06.039

    CAS  Article  Google Scholar 

  79. Naseroleslami M, Parivar K, Khoei S, Aboutaleb N (2016) Magnetic resonance imaging of human-derived amniotic membrane stem cells using PEGylated superparamagnetic iron oxide nanoparticles. Cell J (Yakhteh) 18:332

    Google Scholar 

  80. Ndounla J, Pulgarin C (2015) Solar light (hν) and H2O2/hν photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region. Environ Sci Pollut Res 22(21):17082–17094. https://doi.org/10.1007/s11356-015-4784-0

    CAS  Article  Google Scholar 

  81. Ni M, Leung MK, Leung DY, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11(3):401–425. https://doi.org/10.1016/j.rser.2005.01.009

    CAS  Article  Google Scholar 

  82. Oller I, Gernjak W, Maldonado M, Pérez-Estrada L, Sánchez-Pérez J, Malato S (2006) Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J Hazard Mater 138(3):507–517. https://doi.org/10.1016/j.jhazmat.2006.05.075

    CAS  Article  Google Scholar 

  83. Oppenländer T (2003) Photochemical purification of water and air: advanced oxidation processes (AOPs)-principles, reaction mechanisms, Reactor Concepts. John Wiley & Sons, Hoboken

    Google Scholar 

  84. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem 117(19):2932–2937. https://doi.org/10.1002/ange.200461665

    Article  Google Scholar 

  85. Qi H, Yan B, Lu W, Li C, Yang Y (2011) A non-alkoxide sol-gel method for the preparation of magnetite (Fe3O4) nanoparticles. Curr Nanosci 7(3):381–388. https://doi.org/10.2174/157341311795542426

    CAS  Article  Google Scholar 

  86. Qu Y, Duan X (2013) Progress, challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev 42(7):2568–2580. https://doi.org/10.1039/C2CS35355E

    CAS  Article  Google Scholar 

  87. Rajeshwar K, Osugi M, Chanmanee W, Chenthamarakshan C, Zanoni MVB, Kajitvichyanukul P, Krishnan-Ayer R (2008) Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J Photochem Photobiol C: Photochem Rev 9(4):171–192. https://doi.org/10.1016/j.jphotochemrev.2008.09.001

    CAS  Article  Google Scholar 

  88. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2006) Biomaterials science: an introduction to materials in medicine. MRS Bull 31:59

    Google Scholar 

  89. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878. https://doi.org/10.1021/cr300068p

    CAS  Article  Google Scholar 

  90. Rosenfeldt EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 38(20):5476–5483. https://doi.org/10.1021/es035413p

    CAS  Article  Google Scholar 

  91. Rui Z, Jingguo W, Jianyu C, Lin H, Kangguo M (2010) Photocatalytic degradation of pesticide residues with RE3+-doped nano-TiO2. J Rare Earths 28:353–356

    Article  Google Scholar 

  92. Salgado SYA, Zamora RMR, Zanella R, Peral J, Malato S, Maldonado MI (2016) Photocatalytic hydrogen production in a solar pilot plant using a Au/TiO2 photo catalyst. Int J Hydrog Energy 41(28):11933–11940. https://doi.org/10.1016/j.ijhydene.2016.05.039

    Article  CAS  Google Scholar 

  93. Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M (2013) CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chem Eng J 220:302–310. https://doi.org/10.1016/j.cej.2013.01.036

    CAS  Article  Google Scholar 

  94. Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schüler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440(7080):110–114. https://doi.org/10.1038/nature04382

    CAS  Article  Google Scholar 

  95. Shaban YA, El Sayed MA, El Maradny AA, Al Farawati RK, Al Zobidi MI, Khan SU (2016) Laboratory and pilot-plant scale photocatalytic degradation of polychlorinated biphenyls in seawater using CM-n-TiO2 nanoparticles. Int J Photoenergy 2016:1–7. https://doi.org/10.1155/2016/8471960

    Article  CAS  Google Scholar 

  96. Shekofteh-Gohari M, Habibi-Yangjeh A (2015) Novel magnetically separable Fe3O4@ZnO/AgCl nanocomposites with highly enhanced photocatalytic activities under visible-light irradiation. Sep Purif Technol 147:194–202. https://doi.org/10.1016/j.seppur.2015.04.034

    CAS  Article  Google Scholar 

  97. Shi Z, Xiang Y, Zhang X, Yao S (2011) Photocatalytic activity of Ho-doped anatase titanium dioxide coated magnetite. Photochem Photobiol 87(3):626–631. https://doi.org/10.1111/j.1751-1097.2011.00893.x

    CAS  Article  Google Scholar 

  98. Shiraishi K, Koseki H, Tsurumoto T, Baba K, Naito M, Nakayama K, Shindo H (2009) Antibacterial metal implant with a TiO2-conferred photocatalytic bactericidal effect against Staphylococcus aureus. Surf Interface Anal 41(1):17–22. https://doi.org/10.1002/sia.2965

    CAS  Article  Google Scholar 

  99. Shojaei AF, Shams-Nateri A, Ghomashpasand M (2015) Comparative study of photocatalytic activities of magnetically separable WO3/TiO2/Fe3O4 nanocomposites and TiO2, WO3/TiO2 and TiO2/Fe3O4 under visible light irradiation. Superlattice Microst 88:211–224. https://doi.org/10.1016/j.spmi.2015.09.014

    Article  CAS  Google Scholar 

  100. Singh S, Barick K, Bahadur D (2013) Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. J Mater Chem A 1(10):3325–3333. https://doi.org/10.1039/c2ta01045c

    CAS  Article  Google Scholar 

  101. Spasiano D, Rodriguez LPP, Olleros JC, Malato S, Marotta R, Andreozzi R (2013) TiO2/Cu (II) photocatalytic production of benzaldehyde from benzyl alcohol in solar pilot plant reactor. Appl Catal B Environ 136:56–63

    Article  CAS  Google Scholar 

  102. Stasinakis A (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment—a mini review. Global NEST J 10:376–385

    Google Scholar 

  103. Suh SK, Yuet K, Hwang DK, Bong KW, Doyle PS, Hatton TA (2012) Synthesis of nonspherical superparamagnetic particles: in situ coprecipitation of magnetic nanoparticles in microgels prepared by stop-flow lithography. J Am Chem Soc 134(17):7337–7343. https://doi.org/10.1021/ja209245v

    CAS  Article  Google Scholar 

  104. Sun A, Xiong Z, Xu Y (2008) Removal of malodorous organic sulfides with molecular oxygen and visible light over metal phthalocyanine. J Hazard Mater 152(1):191–195. https://doi.org/10.1016/j.jhazmat.2007.06.105

    CAS  Article  Google Scholar 

  105. Tang J, Zou Z, Ye J (2004) Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angew Chem Int Ed 43(34):4463–4466. https://doi.org/10.1002/anie.200353594

    CAS  Article  Google Scholar 

  106. Tang H, Zhang D, Tang G, Ji X, Li W, Li C, Yang X (2013) Hydrothermal synthesis and visible-light photocatalytic activity of α-Fe2O3/TiO2 composite hollow microspheres. Ceram Int 39(8):8633–8640. https://doi.org/10.1016/j.ceramint.2013.04.040

    CAS  Article  Google Scholar 

  107. Tang W, Su Y, Wang X, Li Q, Gao S, Shang JK (2014) Synthesis of a superparamagnetic MFNs@SiO2@Ag4SiW12O40/Ag composite photocatalyst, its superior photocatalytic performance under visible light illumination, and its easy magnetic separation. RSC Adv 4(57):30090–30099. https://doi.org/10.1039/C4RA03711A

    CAS  Article  Google Scholar 

  108. Tanhaei B, Ayati A, Lahtinen M, Mahmoodzadeh Vaziri B, Sillanpää M (2016) A magnetic mesoporous chitosan based core-shells biopolymer for anionic dye adsorption: kinetic and isothermal study and application of ANN. J Appl Polym Sci 133(22):1–11

  109. Theurich J, Bahnemann D, Vogel R, Ehamed F, Alhakimi G, Rajab I (1997) Photocatalytic degradation of naphthalene and anthracene: GC-MS analysis of the degradation pathway. Res Chem Intermed 23(3):247–274. https://doi.org/10.1163/156856797X00457

    CAS  Article  Google Scholar 

  110. Tian Y, Yu B, Li X, Li K (2011) Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J Mater Chem 21(8):2476–2481. https://doi.org/10.1039/c0jm02913k

    CAS  Article  Google Scholar 

  111. Toepfer B, Gora A, Puma GL (2006) Photocatalytic oxidation of multicomponent solutions of herbicides: reaction kinetics analysis with explicit photon absorption effects. Appl Catal B Environ 68(3-4):171–180. https://doi.org/10.1016/j.apcatb.2006.06.020

    CAS  Article  Google Scholar 

  112. Topac BS, Alkan U (2016) Comparison of solar/H2O2 and solar photo-fenton processes for the disinfection of domestic wastewaters. KSCE J Civ Eng 20(7):2632–2639. https://doi.org/10.1007/s12205-016-0416-6

    Article  Google Scholar 

  113. Trapido M, Hirvonen A, Veressinina Y, Hentunen J, Munter R (1997) Ozonation, ozone/UV and UV/H O degradation of chlorophenols. Ozone Sci Eng 19(1):75–96

  114. Vanga PR, Mangalaraja R, Ashok M (2015) Structural, magnetic and photocatalytic properties of La and alkaline co-doped BiFeO3 nanoparticles. Mater Sci Semicond Process 40:796–802. https://doi.org/10.1016/j.mssp.2015.07.078

    Article  CAS  Google Scholar 

  115. Villa K, Domènech X, Malato S, Maldonado MI, Peral J (2013) Heterogeneous photocatalytic hydrogen generation in a solar pilot plant. Int J Hydrog Energy 38(29):12718–12724. https://doi.org/10.1016/j.ijhydene.2013.07.046

    CAS  Article  Google Scholar 

  116. Wang C, Xu C, Zeng H, Sun S (2009a) Recent progress in syntheses and applications of dumbbell-like nanoparticles. Adv Mater 21(30):3045–3052. https://doi.org/10.1002/adma.200900320

    CAS  Article  Google Scholar 

  117. Wang C, Yin L, Zhang L, Kang L, Wang X, Gao R (2009b) Magnetic (γ-Fe2O3@ SiO2)n@TiO2 functional hybrid nanoparticles with actived photocatalytic ability. J Phys Chem C 113(10):4008–4011. https://doi.org/10.1021/jp809835a

    CAS  Article  Google Scholar 

  118. Wang H, Hu Y, Jiang Y, Qiu L, Wu H, Guo B, Shen Y, Wang Y, Zhu L, Xie A (2013) Facile synthesis and excellent recyclable photocatalytic activity of pine cone-like Fe3O4@Cu2O/Cu porous nanocomposites. Dalton Trans 42(14):4915–4921. https://doi.org/10.1039/c2dt32290k

    CAS  Article  Google Scholar 

  119. Wang X, Li X, Li X, Xu L, Liu Z, Duan L, Liu J (2014) Electrospun TiO2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J Mater Chem A 2:12304–12310

    Article  Google Scholar 

  120. Wang M, Wei N, Fu W, Yan M, Long L, Yao Y, Yin G, Liao X, Huang Z, Chen X (2015) An efficient and recyclable urchin-like yolk–shell Fe3O4@SiO2@Co3O4 catalyst for photocatalytic water oxidation. Catal Lett 145(4):1067–1071. https://doi.org/10.1007/s10562-015-1501-z

    CAS  Article  Google Scholar 

  121. Wu W, Xiao X, Zhang S, Zhou J, Fan L, Ren F, Jiang C (2010) Large-scale and controlled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism, and magnetic properties. J Phys Chem C 114(39):16092–16103. https://doi.org/10.1021/jp1010154

    CAS  Article  Google Scholar 

  122. Wu L, Yao H, Hu B, Yu S-H (2011) Unique lamellar sodium/potassium iron oxide nanosheets: facile microwave-assisted synthesis and magnetic and electrochemical properties. Chem Mater 23(17):3946–3952. https://doi.org/10.1021/cm2013736

    CAS  Article  Google Scholar 

  123. Wu W, Liao L, Zhang S, Zhou J, Xiao X, Ren F, Sun L, Dai Z, Jiang C (2013) Non-centrosymmetric Au–SnO2 hybrid nanostructures with strong localization of plasmonic for enhanced photocatalysis application. Nano 5:5628–5636

    CAS  Google Scholar 

  124. Wu W, Jiang C, Roy VA (2015) Recent progress in magnetic iron oxide–semiconductor composite nanomaterials as promising photocatalysts. Nano 7:38–58

    CAS  Google Scholar 

  125. Xi G, Yue B, Cao J, Ye J (2011) Fe3O4/WO3 hierarchical core–shell structure: high-performance and recyclable visible-light photocatalysis. Chem—Eur J 17(18):5145–5154. https://doi.org/10.1002/chem.201002229

    CAS  Article  Google Scholar 

  126. Xu S, Shangguan W, Yuan J, Shi J, Chen M (2007) Preparations and photocatalytic degradation of methyl orange in water on magnetically separable Bi12TiO20 supported on nickel ferrite. Sci Technol Adv Mater 8(1-2):40–46. https://doi.org/10.1016/j.stam.2006.09.009

    Article  CAS  Google Scholar 

  127. Xu S, Feng D, Shangguan W (2009) Preparations and photocatalytic properties of visible-light-active zinc ferrite-doped TiO2 photocatalyst. J Phys Chem C 113(6):2463–2467. https://doi.org/10.1021/jp806704y

    CAS  Article  Google Scholar 

  128. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10. https://doi.org/10.1016/j.scitotenv.2012.02.023

    CAS  Article  Google Scholar 

  129. Yan Y, Sun S, Song Y, Yan X, Guan W, Liu X, Shi W (2013) Microwave-assisted in situ synthesis of reduced graphene oxide-BiVO4 composite photocatalysts and their enhanced photocatalytic performance for the degradation of ciprofloxacin. J Hazard Mater 250:106–114

    Article  CAS  Google Scholar 

  130. Yang J, Chen C, Ji H, Ma W, Zhao J (2005) Mechanism of TiO2-assisted photocatalytic degradation of dyes under visible irradiation: photoelectrocatalytic study by TiO2-film electrodes. J Phys Chem B 109(46):21900–21907. https://doi.org/10.1021/jp0540914

    CAS  Article  Google Scholar 

  131. Yao YR, Huang WZ, Zhou H, Cui X, Zheng YF, Song XC (2014a) Synthesis of core–shell nanostructured magnetic photocatalyst Fe3O4@SiO2@Ag3PO4 with excellent visible-light-responding photocatalytic activity. J Nanopart Res 16:1–10

    Google Scholar 

  132. Yao YR, Huang WZ, Zhou H, Cui X, Zheng YF, Song XC (2014b) Synthesis of core–shell nanostructured magnetic photocatalyst Fe3O4@SiO2@Ag3PO4 with excellent visible-light-responding photocatalytic activity. J Nanopart Res 16(11):2742. https://doi.org/10.1007/s11051-014-2742-2

    Article  CAS  Google Scholar 

  133. Yeber M, Rodríguez J, Freer J, Baeza J, Durán N, Mansilla HD (1999) Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39(10):1679–1688. https://doi.org/10.1016/S0045-6535(99)00068-5

    CAS  Article  Google Scholar 

  134. Yoon S, Krishnan KM (2011) Temperature dependence of magnetic anisotropy constant in manganese ferrite nanoparticles at low temperature. J Appl Phys 109:07B534

    Article  CAS  Google Scholar 

  135. Yu JC, Ho W, Lin J, Yip H, Wong PK (2003) Photocatalytic activity, antibacterial effect, and photoinduced hydrophilicity of TiO2 films coated on a stainless steel substrate. Environ Sci Technol 37:2296–2301

    CAS  Article  Google Scholar 

  136. Yu L, Yang X, Wang D (2015) TiO2 incorporated in magnetic mesoporous SBA-15 by a facile inner-pore hydrolysis process toward enhanced adsorption–photocatalysis performances for As (III). J Colloid Interface Sci 448:525–532. https://doi.org/10.1016/j.jcis.2015.02.071

    CAS  Article  Google Scholar 

  137. Zapata-Torres M, Hernández-Rodríguez E, Mis-Fernandez R, Meléndez-Lira M, Amaya OC, Bahena D, Rejon V, Peña J (2015) Visible and infrared photocatalytic activity of TiOx thin films prepared by reactive sputtering. Mater Sci Semicond Process 40:720–726. https://doi.org/10.1016/j.mssp.2015.07.072

    CAS  Article  Google Scholar 

  138. Zeng L, Ren W, Xiang L, Zheng J, Chen B, Wu A (2013) Multifunctional Fe3O4–TiO2 nanocomposites for magnetic resonance imaging and potential photodynamic therapy. Nano 5:2107–2113

    CAS  Google Scholar 

  139. Zhang T, Yan X, Sun DD (2012) Hierarchically multifunctional K-OMS-2/TiO2/Fe3O4 heterojunctions for the photocatalytic oxidation of humic acid under solar light irradiation. J Hazard Mater 243:302–310. https://doi.org/10.1016/j.jhazmat.2012.10.037

    CAS  Article  Google Scholar 

  140. Zhang C, Wang H, Liu F, Wang L, He H (2013) Magnetic core–shell Fe3O4@C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose 20(1):127–134. https://doi.org/10.1007/s10570-012-9839-5

    CAS  Article  Google Scholar 

  141. Zhang Y, Lin X, Zhou Q, Luo X (2016) Fluoride adsorption from aqueous solution by magnetic core-shell Fe3O4@ alginate-La particles fabricated via electro-coextrusion. Appl Surf Sci 389:34–45. https://doi.org/10.1016/j.apsusc.2016.07.087

    CAS  Article  Google Scholar 

  142. Zhongliang S, Xingman Y, Shuhua Y (2012) Photocatalytic activity of cerium-doped mesoporous TiO2 coated Fe3O4 magnetic composite under UV and visible light. J Rare Earths 30:355–360

    Article  CAS  Google Scholar 

  143. Zhou Y, Zhu Y, Yang X, Huang J, Chen W, Lv X, Li C, Li C (2015) Au decorated Fe3O4@TiO2 magnetic composites with visible light-assisted enhanced catalytic reduction of 4-nitrophenol. RSC Adv 5(62):50454–50461. https://doi.org/10.1039/C5RA08243A

    CAS  Article  Google Scholar 

  144. Zhu S, Xu T, Fu H, Zhao J, Zhu Y (2007) Synergetic effect of Bi2WO6 photocatalyst with C60 and enhanced photoactivity under visible irradiation. Environ Sci Technol 41(17):6234–6239. https://doi.org/10.1021/es070953y

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Ahmadpour.

Additional information

Highlights

• The magnetic-semiconductor nanoheterostructures and their recent applications on the water treatment technology are focused.

• The principle of the magnetic-semiconductor nanoheterostructure photocatalysts under solar light is described.

• The potential of magnetic-semiconductor nanomaterials is discussed.

• Magnetic core-shell and heterojunction structures are presented.

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, V., Bastami, T.R. & Ahmadpour, A. Solar energy harvesting by magnetic-semiconductor nanoheterostructure in water treatment technology. Environ Sci Pollut Res 25, 8268–8285 (2018). https://doi.org/10.1007/s11356-018-1224-y

Download citation

Keywords

  • Magnetic
  • Semiconductor
  • Nanoheterostrucutre
  • Core-shell
  • Heterojunction
  • Photocatalysis
  • Solar light