Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 10, pp 9402–9415 | Cite as

Chemically and size-resolved particulate matter dry deposition on stone and surrogate surfaces inside and outside the low emission zone of Milan: application of a newly developed “Deposition Box”

  • Luca Ferrero
  • Marco Casati
  • Lara Nobili
  • Luca D’Angelo
  • Grazia Rovelli
  • Giorgia Sangiorgi
  • Cristiana Rizzi
  • Maria Grazia Perrone
  • Antonio Sansonetti
  • Claudia Conti
  • Ezio Bolzacchini
  • Elena Bernardi
  • Ivano Vassura
Research Article

Abstract

The collection of atmospheric particles on not-filtering substrates via dry deposition, and the subsequent study of the particle-induced material decay, is trivial due to the high number of variables simultaneously acting on the investigated surface. This work reports seasonally resolved data of chemical composition and size distribution of particulate matter deposed on stone and surrogate surfaces obtained using a new method, especially developed at this purpose. A “Deposition Box” was designed allowing the particulate matter dry deposition to occur selectively removing, at the same time, variables that can mask the effect of airborne particles on material decay. A pitched roof avoided rainfall and wind variability; a standardised gentle air exchange rate ensured a continuous “sampling” of ambient air leaving unchanged the sampled particle size distribution and, at the same time, leaving quite calm condition inside the box, allowing the deposition to occur. Thus, the “Deposition Box” represents an affordable tool that can be used complementary to traditional exposure systems. With this system, several exposure campaigns, involving investigated stone materials (ISMs) (Carrara Marble, Botticino limestone, Noto calcarenite and Granite) and surrogate (Quartz, PTFE, and Aluminium) substrates, have been performed in two different sites placed in Milan (Italy) inside and outside the low emission zone. Deposition rates (30–90 μg cm−2 month−1) showed significant differences between sites and seasons, becoming less evident considering long-period exposures due to a positive feedback on the deposition induced by the deposited particles. Similarly, different stone substrates influenced the deposition rates too. The collected deposits have been observed with optical and scanning electron microscopes and analysed by ion chromatography. Ion deposition rates were similar in the two sites during winter, whereas it was greater outside the low emission zone during summer and considering the long-period exposure. The dimensional distribution of the collected deposits showed a significant presence of fine particles in agreement with deposition rate of the ionic fraction. The obtained results allowed to point out the role of the fine particles fraction and the importance of making seasonal studies.

Keywords

Aerosols Chemical composition Size distribution Dry deposition Material decay 

References

  1. Balestrini R, Galli L, Tartari G (2000) Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy. Atmos Environ 34(9):1455–1470.  https://doi.org/10.1016/S1352-2310(99)00404-5 CrossRefGoogle Scholar
  2. Bonazza A, Sabbioni C, Ghedini N (2005) Quantitative data on carbon fractions in interpretation of black crusts and soiling on European built heritage. Atmos Environ 39(14):2607–2618.  https://doi.org/10.1016/j.atmosenv.2005.01.040 CrossRefGoogle Scholar
  3. Butlin RN, Coote AT, Devenish M, Hughes ISC, Hutchens CM, Irwin JG, Lloyd GO, Yates TJS (1992) Preliminary results from the analysis of stone tablets from the national materials exposure programme (nmep). Atmos Environ 26(2):189–198.  https://doi.org/10.1016/0957-1272(92)90022-K CrossRefGoogle Scholar
  4. Camuffo D, Del Monte M, Sabbioni C, Vittori O (1982) Wetting, deterioration and visual features of stone surfaces in an urban area. Atmos Environ 16(9):2253–2259.  https://doi.org/10.1016/0004-6981(82)90296-7 CrossRefGoogle Scholar
  5. Casati M, Rovelli G, D’Angelo L, Perrone MG, Sangiorgi G, Bolzacchini E, Ferrero L (2015) Experimental measurements of particulate matter deliquescence and crystallization relative humidity: application in heritage climatology. Aerosol Air Qual Res 15:399–409.  https://doi.org/10.4209/aaqr.2014.11.0289 Google Scholar
  6. Casuccio GS, Schlaegle SF, Lersch TL, Huffman GP, Chen Y, Shah N (2004) Measurement of fine particulate matter using electron microscopy techniques. Fuel Process Technol 85(6-7):763–779.  https://doi.org/10.1016/j.fuproc.2003.11.026 CrossRefGoogle Scholar
  7. D’Angelo L, Rovelli G, Casati M, Sangiorgi G, Perrone MG, Bolzacchini E, Ferrero L (2016) Seasonal behavior of PM 2.5 deliquescence, crystallization and hygroscopic growth in the Po Valley (Milan): implications for remote sensing applications. Atmos Res 176-177:87–95.  https://doi.org/10.1016/j.atmosres.2016.02.011 CrossRefGoogle Scholar
  8. Di Mauro B, Fava F, Ferrero L, Garzonio R, Baccolo G, Delmonte B, Colombo R (2015) Mineral dust impact on snow radiative properties in the European alps combining ground, UAV and satellite observations. J Geophys Res-Atmos 120(12):6080–6097.  https://doi.org/10.1002/2015JD023287 CrossRefGoogle Scholar
  9. Ferm M, Watt J, O’Hanlon S, De Santis F, Varotsos C (2006) Deposition measurement of particulate matter in connection with corrosion studies. Anal Bioanal Chem 384(6):1320–1330.  https://doi.org/10.1007/s00216-005-0293-1 CrossRefGoogle Scholar
  10. Ferrero L, Sangiorgi G, Ferrini BS, Perrone MG, Moscatelli M, D’Angelo L, Rovelli G, Ariatta A, Truccolo R, Bolzacchini E (2013) Aerosol corrosion prevention and energy-saving strategies in the design of green data centers. Environ Sci Technol 47(8):3856–3864.  https://doi.org/10.1021/es304790f CrossRefGoogle Scholar
  11. Ferrero L, Castelli M, Ferrini BS, Moscatelli M, Perrone MG, Sangiorgi G, D’Angelo L, Rovelli G, Moroni B, Scardazza F, Mocnik G, Bolzacchini E, Petitta M, Cappelletti D (2014) Impact of black carbon aerosol over Italian basin valleys: high-resolution measurements along vertical profiles, radiative forcing and heating rate. Atmos Chem Phys 14(18):9641–9664.  https://doi.org/10.5194/acp-14-9641-2014 CrossRefGoogle Scholar
  12. Ferrero L, D’Angelo L, Rovelli G, Sangiorgi G, Perrone MG, Moscatelli M, Casati M, Rozzoni V, Bolzacchini E (2015) Determination of aerosol deliquescence and crystallization relative humidity for energy saving in free-cooled data centers. Int J Environ Sci Technol 12(9):2777–2790.  https://doi.org/10.1007/s13762-014-0680-2 CrossRefGoogle Scholar
  13. Ferrero L, Cappelletti D, Busetto M, Mazzola M, Lupi A, Lanconelli C, Becagli S, Traversi R, Caiazzo L, Giardi F, Moroni B, Crocchianti S, Fierz M, Mocnik G, Sangiorgi G, Perrone MG, Maturilli M, Vitale V, Udisti R, Bolzacchini E (2016) Vertical profiles of aerosol and black carbon in the Arctic: a seasonal phenomenology along 2 years (2011–2012) of field campaigns. Atmos Chem Phys 16(19):12601–12629.  https://doi.org/10.5194/acp-16-12601-2016 CrossRefGoogle Scholar
  14. Graue B, Siegesmund S, Oyhantcaba P, Naumann R, Licha T, Simon K (2013) The effect of air pollution on stone decay: the decay of the Drachenfels trachyte in industrial, urban, and rural environments—a case study of the cologne, Altenberg and Xanten cathedrals. Environmental Earth Science 69(4):1095–1124.  https://doi.org/10.1007/s12665-012-2161-6 CrossRefGoogle Scholar
  15. Huang J, Choi HD, Landis MS, Holsen TM (2012) An application of passive samplers to understand atmospheric mercury concentration and dry deposition spatial distributions. J Environ Monit 14(11):2976–2982.  https://doi.org/10.1039/C2EM30514C CrossRefGoogle Scholar
  16. Huang J, Liu Y, Holsen TM (2011) Comparison between knife-edge and frisbee-shaped surrogate surfaces for making dry deposition measurements: wind tunnel experiments and computational fluid dynamics (CFD) modeling. Atmos Environ 45(25):4213–4219.  https://doi.org/10.1016/j.atmosenv.2011.05.013 CrossRefGoogle Scholar
  17. Inomata Y, Igarashi Y, Chiba M, Shinoda Y, Takahashi H (2009) Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba, Japan. Atmos Environ 43(29):4503–4512.  https://doi.org/10.1016/j.atmosenv.2009.06.048 CrossRefGoogle Scholar
  18. López-García P, Gelado-Caballero MD, Santana-Castellano D, Suárez de Tangil M, Collado-Sánchez C, Hernández-Brito JJ (2013) A three-year time-series of dust deposition flux measurements in gran Canaria, Spain: a comparison of wet and dry surface deposition samplers. Atmos Environ 79:689–694 http://doi.org.proxy.unimib.it/10.1016/j.atmosenv.2013.07.044 CrossRefGoogle Scholar
  19. Maro D, Connan O, Flori JP, Hébert D, Mestayer P, Olive F, Solier L (2014) Aerosol dry deposition in the urban environment: assessment of deposition velocity on building facades. J Aerosol Sci 69:113–131.  https://doi.org/10.1016/j.jaerosci.2013.12.001 CrossRefGoogle Scholar
  20. Martin ST (2000) Phase transitions of aqueous atmospheric particles. Chem Rev 100(9):3403–3454.  https://doi.org/10.1021/cr990034t CrossRefGoogle Scholar
  21. Martin ST, Schlenker JC, Malinowski A, Hung HM (2003) Crystallization of atmospheric sulfate-nitrate-ammonium particles. Geophys Res Lett 30(21).  https://doi.org/10.1029/2003GL017930
  22. Monforti F, Bellasio R, Bianconi R, Clai G, Zanini G (2004) An evaluation of particle deposition fluxes to cultural heritage sites in Florence, Italy. Sci Total Environ 334-335:61–72.  https://doi.org/10.1016/j.scitotenv.2004.04.030 CrossRefGoogle Scholar
  23. Nava S, Becherini F, Bernardi A, Bonazza A, Chiari M, García-Orellana I, Vecchi R (2010) An integrated approach to assess air pollution threats to cultural heritage in a semi-confined environment: the case study of Michelozzo’s courtyard in Florence (Italy). Sci Total Environ 408(6):1403–1413.  https://doi.org/10.1016/j.scitotenv.2009.07.030 CrossRefGoogle Scholar
  24. Owoade OK, Olise FS, Obioh IB, Olaniyi HB, Bolzacchini E, Ferrero L, Perrone G (2006) PM10 sampler deposited air particulates: ascertaining uniformity of sample on filter through rotated exposure to radiation. Nucl Instrum Methods Phys Res Sect A 564(1):315–318.  https://doi.org/10.1016/j.nima.2006.03.037 CrossRefGoogle Scholar
  25. Ozga I, Bonazza A, Bernardi E, Tittarelli F, Favoni O, Ghedini N, Sabbioni C (2011) Diagnosis of surface damage induced by air pollution on 20th-century concrete buildings. Atmos Environ 45(28):4986–4995.  https://doi.org/10.1016/j.atmosenv.2011.05.072 CrossRefGoogle Scholar
  26. Perrone MG, Larsen BR, Ferrero L, Sangiorgi G, De Gennaro G, Udisti R, Bolzacchini E (2012) Sources of high PM2.5 concentrations in Milan, northern Italy: molecular marker data and CMB modelling. Sci Total Environ 45:3621–3630.  https://doi.org/10.1016/j.scitotenv.2011.11.026 Google Scholar
  27. Pesava P, Aksu R, Toprak S, Horvath H, Seidl S (1999) Dry deposition of particles to building surfaces and soiling. Sci Total Environ 235(1–3):25–35.  https://doi.org/10.1016/S0048-9697(99)00187-4 CrossRefGoogle Scholar
  28. Pipal AS, Kulshrestha A, Taneja A (2011) Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos Environ 45(28):4986–4995.  https://doi.org/10.1016/j.atmosenv.2011.03.062 CrossRefGoogle Scholar
  29. Potukuchi S, Wexler AS (1995) Solid-aqueous-phase transitions atmospheric aerosols - II. Acidic solutions. Atmos Environ 29(22):3357–3364.  https://doi.org/10.1016/1352-2310(95)00212-H CrossRefGoogle Scholar
  30. Rampazzi L, Giussani B, Rizzo B, Corti C, Pozzi A, Dossi C (2011) Monuments as sampling surfaces of recent traffic pollution. Environ Sci Pollut Res Int 18(2):184–191.  https://doi.org/10.1007/s11356-010-0363-6 CrossRefGoogle Scholar
  31. Realini M, Negrotti R, Appollonia L, Vaudan D (1995) Deposition of particulate matter on stone surfaces: an experimental verification on its effects on Carrara marble. Sci Total Environ 167(1-3):67–72.  https://doi.org/10.1016/0048-9697(95)04570-Q CrossRefGoogle Scholar
  32. Rodriguez-Navarro C, Sebastian E (1996) Role of particulate matter from vehicle exhaust on porous building stones (limestone) sulfation. Sci Total Environ 187(2):79–91.  https://doi.org/10.1016/0048-9697(96)05124-8 CrossRefGoogle Scholar
  33. Sabbioni C (1995) Contribution of atmospheric deposition to the formation of damage layers. Sci Total Environ 167:1–3CrossRefGoogle Scholar
  34. Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change, 2nd edn. Wiley-Interscience, HobokenGoogle Scholar
  35. Shannigrahi S, Fukushima T, Ozaki N (2005) Comparison of different methods for measuring dry deposition fluxes of particulate matter and polycyclic aromatic hydrocarbons (PAHs) in the ambient air. Atmos Environ 39(4):653–662 http://doi.org.proxy.unimib.it/10.1016/j.atmosenv.2004.10.025 CrossRefGoogle Scholar
  36. Telloli C, Malaguti A, Mircea M, Tassinari R, Vaccaro C, Berico M (2014) Properties of agricultural aerosol related during wheat harvest threshing, plowing and sowing. J Environ Sci 26(9):1903–1191.  https://doi.org/10.1016/j.jes.2014.07.004 CrossRefGoogle Scholar
  37. Uni 10921 (2001) Beni Culturali, Materiali lapidei naturali ed artificiali, Prodotti idrorepellenti – Applicazione su provini e determinazione in laboratorio delle loro caratteristiche. Commissione “Beni culturali NORMAL” Febbraio 2001Google Scholar
  38. Urosevic M, Yebra-Rodríguez A, Sebastián-Pardo E, Cardell C (2012) Black soiling of an architectural limestone during two-year term exposure to urban air in the city of Granada (Spain). Sci Total Environ 414:564–575.  https://doi.org/10.1016/j.scitotenv.2011.11.028 CrossRefGoogle Scholar
  39. Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Exposure tests of building materials in urban atmosphere. Sci Total Environ 224(1–3):235–244.  https://doi.org/10.1016/S0048-9697(98)00359-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luca Ferrero
    • 1
  • Marco Casati
    • 1
  • Lara Nobili
    • 2
  • Luca D’Angelo
    • 1
  • Grazia Rovelli
    • 1
    • 3
  • Giorgia Sangiorgi
    • 1
  • Cristiana Rizzi
    • 1
  • Maria Grazia Perrone
    • 1
  • Antonio Sansonetti
    • 4
  • Claudia Conti
    • 4
  • Ezio Bolzacchini
    • 1
  • Elena Bernardi
    • 2
  • Ivano Vassura
    • 2
  1. 1.POLARIS Research Centre, Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Department of Industrial Chemistry “Toso Montanari”University of BolognaBolognaItaly
  3. 3.School of ChemistryUniversity of BristolCantock’s CloseUK
  4. 4.ICVBC – CNR Institute for the Conservation and Valorisation of Cultural HeritageMilanItaly

Personalised recommendations