Skip to main content

Association of detoxification enzymes with butene-fipronil in larvae and adults of Drosophila melanogaster

Abstract

Insecticide resistance is a major challenge in successful insect pest control as the insects have the ability to develop resistance to various widely used insecticides. Butene-fipronil is a novel compound with high toxicity to insects and less toxicity to the non-target organisms. In the present study, the effect of butene-fipronil alone and in combination with three enzyme inhibitors, piperonyl butoxide (PBO), diethyl maleate (DEM), and triphenyl phosphate (TPP), was carried out on larvae and adults of Drosophilia melanogaster. Our results indicated that the co-toxicity indices of butene-fipronil + PBO, butene-fipronil + TPP, and butene-fipronil + DEM mixtures were 437.3, 335.0, and 210.3, respectively, in the second-instar larvae, while 186.6, 256.2, and 238.5, respectively, in the adults, indicating synergistic effects. Interestingly, butene-fipronil increased the expression of CYP28A5 in the larvae; CYP9F2, CYP304A1, CYP28A5, and CYP318A1 in the female adults; and CYP303A1 and CYP28A5 in the male adults. Furthermore, high-level expression of Est-7 was observed in the female adults compared to larvae and male adults. Our results suggest that there is no difference in butene-fipronil metabolism in larvae and male and female adults of D. melanogaster.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

  • Arain MS, Hu, X-X, Li G-Q (2014) Assessment of toxicity and potential risk of butene-fipronil using Drosophila melanogaster, in comparison to nine conventional insecticides. Bull Environ Contamination Toxicol 92:190–195

  • Claudianos C, Russell RJ, Oakeshott JG (1999) The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochem Mol Biol 29(8):675–686. https://doi.org/10.1016/S0965-1748(99)00035-1

    CAS  Article  Google Scholar 

  • Cooper J, Dobson H (2007) The benefits of pesticides to mankind and the environment. Crop Prot 26(9):1337–1348. https://doi.org/10.1016/j.cropro.2007.03.022

    CAS  Article  Google Scholar 

  • Dierick HA, Greenspan RJ (2006) Molecular analysis of flies selected for aggressive behavior. Nat Genet 38(9):1023–1031. https://doi.org/10.1038/ng1864

    CAS  Article  Google Scholar 

  • Feyereisen R (2005) Insect cytochrome P450 in. Comprehensive molecular insect science. ed. LI Gilbert, K. Iatrou & SS Gill edition. Elsevier

  • Feyereisen R (2011) Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim Biophys Acta (BBA)-Proteins Proteomics 1814:19–28

    CAS  Article  Google Scholar 

  • Ffrench-Constant R (1999) Target site mediated insecticide resistance: what questions remain? Insect Biochem Mol Biol 29(5):397–403. https://doi.org/10.1016/S0965-1748(99)00024-7

    CAS  Article  Google Scholar 

  • Gilbert LI (2004) Halloween genes encode P450 enzymes that mediate steroid hormone biosynthesis in Drosophila melanogaster. Mol Cell Endocrinol 215(1-2):1–10. https://doi.org/10.1016/j.mce.2003.11.003

    CAS  Article  Google Scholar 

  • Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. PNAS 106(14):5731–5736. https://doi.org/10.1073/pnas.0812141106

    CAS  Article  Google Scholar 

  • Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant RH, Feyereisen R (2006) Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36(8):674–682. https://doi.org/10.1016/j.ibmb.2006.05.009

    Article  Google Scholar 

  • Li X, Huang Q, Yuan J, Tang Z (2007) Fipronil resistance mechanisms in the rice stem borer, Chilo suppressalis Walker. Pestic Biochem Physiol 89(3):169–174. https://doi.org/10.1016/j.pestbp.2007.06.002

    Article  Google Scholar 

  • Liang D, McGill J, Pietri JE (2017) Unidirectional cross-resistance in German cockroach (Blattodea: Blattellidae) populations under exposure to insecticidal baits. J Econ Entomol 110(4):1713–1718. https://doi.org/10.1093/jee/tox144

    Article  Google Scholar 

  • Liu S, Niu H, Xiao T, Xue C, Liu Z, Luo W (2009) Does phenoloxidase contributed to the resistance? Selection with butane-fipronil enhanced its activities from diamondback moths. Open Biochem J 3:9–13. https://doi.org/10.2174/1874091X00903010009

    CAS  Article  Google Scholar 

  • Liu Y-H, Chung Y-C, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67(8):3746–3749. https://doi.org/10.1128/AEM.67.8.3746-3749.2001

    CAS  Article  Google Scholar 

  • Matsumura F (2012) Toxicology of insecticides. Springer Science & Business Media

  • Moores GD, Philippou D, Borzatta V, Trincia P, Jewess P, Gunning R, Bingham G (2009) An analogue of piperonyl butoxide facilitates the characterisation of metabolic resistance. Pest Manag Sci 65(2):150–154. https://doi.org/10.1002/ps.1661

    CAS  Article  Google Scholar 

  • Newcomb RD, Campbell P, Ollis D, Cheah E, Russell R, Oakeshott J (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Nat Acad Sci 94(14):7464–7468. https://doi.org/10.1073/pnas.94.14.7464

    CAS  Article  Google Scholar 

  • Niu H, Luo W, Zong J, Wei S, Wang H, Pan Z (2008) Realized heritability of resistance to butene-fipronil in diamondback moth, Plutella xylostella. Acta Phytophylacica Sin 35:165–168

    Google Scholar 

  • Panini M, Manicardi G, Moores G, Mazzoni E (2016) An overview of the main pathways of metabolic resistance in insects. ISJ 13:326–335

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45, 9, 445, DOI: https://doi.org/10.1093/nar/29.9.e45

  • Raffa KF, Priester TM (1985) Synergists as research tools and control agents in agriculture. J Agric Entomol 2:27–45

    CAS  Google Scholar 

  • Scharf ME, Siegfried BD, Meinke LJ, Chandler LD (2000) Fipronil metabolism, oxidative sulfone formation and toxicity among organophosphate- and carbamate-resistant and susceptible western corn rootworm populations. Pest Manag Sci 56(9):757–766.

  • Scott J (1991) Insecticide resistance in insects. In: Handbook of Pest Management, vol 2, pp 663–677

    Google Scholar 

  • Shakeel M, Farooq M, Nasim W, Akram W, Khan FZA, Jaleel W, Zhu X, Yin H, Li S, Fahad S, Hussain S, Chauhan BS, Jin F (2017a) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environ Sci Pollut Res 24(17):14537–14550. https://doi.org/10.1007/s11356-017-8996-3

    CAS  Article  Google Scholar 

  • Shakeel M, Rodriguez A, Tahir UB, Jin F (2017b) Gene expression studies of reference genes for quantitative real-time PCR: an overview in insects. Biotechnol Lett. https://doi.org/10.1007/s10529-017-2465-4

  • Shakeel M, Zhu X, Kang T, Wan H, Li J (2015) Selection and evaluation of reference genes for quantitative gene expression studies in cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Asia-Pacific Entomol 18(2):123–130. https://doi.org/10.1016/j.aspen.2015.01.001

    CAS  Article  Google Scholar 

  • Tang J, Li J, Shao Y, Yang B, Liu Z (2010) Fipronil resistance in the whitebacked planthopper (Sogatella furcifera): possible resistance mechanisms and cross-resistance. Pest Manag Sci 66(2):121–125. https://doi.org/10.1002/ps.1836

    CAS  Article  Google Scholar 

  • van Leeuwen CJ, Vermeire TG (2007) Risk assessment of chemicals: an introduction. Springer Science & Business Media, DOI: https://doi.org/10.1007/978-1-4020-6102-8,

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:Res 0034. 0031

  • Wang SP, He GL, Chen RR, Li F, Li GQ (2012) The involvement of cytochrome P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae. Arch Insect Biochem Physiol 79(4-5):264–275. https://doi.org/10.1002/arch.21021

    CAS  Article  Google Scholar 

  • Wang S-P, Hu X-X, Meng Q-W, Muhammad SA, Chen R-R, Li F, Li G-Q (2013a) The involvement of several enzymes in methanol detoxification in Drosophila melanogaster adults. Comp Biochem Physiol B: Biochem Mol Biol 166(1):7–14. https://doi.org/10.1016/j.cbpb.2013.05.008

    CAS  Article  Google Scholar 

  • Wang Y, Chen L, An X, Jiang J, Wang Q, Cai L, Zhao X (2013b) Susceptibility to selected insecticides and risk assessment in the insect egg parasitoid Trichogramma confusum (Hymenoptera: Trichogrammatidae). J Econ Entomol 106(1):142–149. https://doi.org/10.1603/EC12313

    CAS  Article  Google Scholar 

  • Wang ZY, Lu YJ, Zhao YR (2015) Fumigation action of four plant oils against eggs of Callosobruchus chinensis (L.) (Coleoptera: Bruchidae). J Essent Oil Bearing Plants 19:1394–1403

    Article  Google Scholar 

  • Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36(12):934–942. https://doi.org/10.1016/j.ibmb.2006.09.004

    CAS  Article  Google Scholar 

  • Wilson TG (2001) Resistance of Drosophila to toxins. Annu Rev Entomol 46(1):545–571. https://doi.org/10.1146/annurev.ento.46.1.545

    CAS  Article  Google Scholar 

  • Wu G (2004) Susceptibility to insecticides and enzymetic characteristics inthe parasitoid Apanteles plutellae Kurdj. (Hymenoptera: Braconidae) and its host Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Acta Entomol Sin 47:25–32

    CAS  Google Scholar 

  • Yu R, Wang Y, Wu C, Cang T, Chen L, Wu S, Zhao X (2012) Acute toxicity and risk assessment of butene-fipronil to silkworm, Bombyx mori. Asian J Ecotox 6:639–645

    Google Scholar 

  • Yuan Z, Wang X, Hao X, Lai Z, Deng X (2009) Formulation development of butene-fipronil 20% WG. Agrochem Res Appl 13:14–17

    Google Scholar 

Download references

Funding

This research was supported by the National Basic Research Program of China (973 Program, No. 2010CB126200), the National Natural Sciences Foundation of China (31272047 and 31360442), and a nationally special fund of China for agri-scientific research in the public interest (201103026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Shahid Arain or Guo-Qing Li.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arain, M.S., Shakeel, M., Elzaki, M.E.A. et al. Association of detoxification enzymes with butene-fipronil in larvae and adults of Drosophila melanogaster. Environ Sci Pollut Res 25, 10006–10013 (2018). https://doi.org/10.1007/s11356-018-1202-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1202-4

Keywords

  • Butene-fipronil
  • Detoxification enzymes
  • Drosophila melanogaster
  • Synergists