The effect of nanoparticles on the photosynthetic pigments in cadmium—zinc interactions


Heavy metal contamination, one of the greatest global problems, not only endangers humans and animals but also negatively affects plants. New trends, the production and industrial applications of metals in nanoforms, lead to release of large amounts of nanoparticles into the environment. However, the influence of nanoparticles on living organisms is not well understood. Cadmium is a heavy metal not essential for plants, and to its phytotoxicity also contributes its chemical similarity to zinc. It has been recorded that zinc at low concentrations reduces the toxicity of cadmium, but our results with ZnO nanoparticles did not proved it. In contrast, ZnO nanoparticles significantly increased the negative effect of cadmium, which was reflected mainly in changes in the content of photosynthetic pigments.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Adrees M, Ali S, Iqbal M, Bharwana SA, Siddiqi Z, Farid M, Ali Q, Saeed R, Rizwan M (2015) Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media. Ecotoxicol Environ Saf 122:1–8.

    Article  CAS  Google Scholar 

  2. Artiushenko T, Syshchykov D, Gryshko V, Ciamporova M, Fiala R, Repka V, Martinka M, Pavlovkin J (2014) Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia 69:1142–1147.

    Article  CAS  Google Scholar 

  3. Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573.

    Article  CAS  Google Scholar 

  4. Benakova M, Ahmadi H, Ducaiova Z, Tylova E, Clemens S, Tuma J (2017) Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ Sci Pollut Res 24:20705–20716.

    Article  CAS  Google Scholar 

  5. Capaldi Arruda SC, Diniz Silva AL, Galazzi RM, Azevedo RA, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705.

    Article  CAS  Google Scholar 

  6. Chen XL, O'Halloran J, Jansen MAK (2016) The toxicity of zinc oxide nanoparticles to Lemna minor (L.) is predominantly caused by dissolved Zn. Aquat Toxicol 174:46–53.

    Article  CAS  Google Scholar 

  7. Cherif J, Mediouni C, Ben Ammar W, Jemal F (2011) Interactions of zinc and cadmium toxicity in their effects on growth and in antioxidative systems in tomato plants (Solanum lycopersicum). J Environ Sci 23:837–844.

    Article  CAS  Google Scholar 

  8. Garcia-Gomez C, Obrador A, Gonzalez D, Babin M, Fernandez MD (2017) Comparative effect of ZnO NPs, ZnO bulk and ZnSO4 in the antioxidant defences of two plant species growing in two agricultural soils under greenhouse conditions. Sci Total Environ 589:11–24.

    Article  CAS  Google Scholar 

  9. Kabir E, Kumar V, Kim KH, Yip ACK, Sohn JR (2018) Environmental impacts of nanomaterials. J Environ Manag 225:261–271.

    Article  CAS  Google Scholar 

  10. Landa P, Cyrusova T, Jerabkova J, Drabek O, Vanek T, Podlipna R (2016) Effect of metal oxides on plant germination: phytotoxicity of nanoparticles, bulk materials, and metal ions. Water Air Soil Pollut 227.

  11. Lutts S, Lefevre I (2015) How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas? Ann Bot 115:509–528.

    Article  CAS  Google Scholar 

  12. Ma HB, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles - a review. Environ Pollut 172:76–85.

    Article  CAS  Google Scholar 

  13. McBeath TM, McLaughlin MJ (2014) Efficacy of zinc oxides as fertilisers. Plant Soil 374:843–855.

    Article  CAS  Google Scholar 

  14. Meulenkamp EA (1998) Synthesis and growth of ZnO nanoparticles. J Phys Chem B 102:5566–5572.

    Article  CAS  Google Scholar 

  15. Missaoui WN, Arnold RD, Cummings BS (2018) Toxicological status of nanoparticles: what we know and what we don't know. Chem Biol Interact 295:1–12.

    Article  CAS  Google Scholar 

  16. Nitsch JP, Nitsch C (1965) In vitro formation of flowers in a short-day species - plumbago indica L. Ann Physiol Veg 7:251

    Google Scholar 

  17. Pagano L, Pasquali F, Majumdar S, De la Torre-Roche R, Zuverza-Mena N, Villani M, Zappettini A, Marra RE, Isch SM, Marmiroli M, Maestri E, Dhankher OP, White JC, Marmiroli N (2017) Exposure of Cucurbita pepo to binary combinations of engineered nanomaterials: physiological and molecular response. Environ Sci-Nano 4:1579–1590.

    Article  CAS  Google Scholar 

  18. Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277.

    Article  CAS  Google Scholar 

  19. Shaymurat T, Gu J, Xu C, Yang Z, Zhao Q, Liu Y, Liu Y (2012) Phytotoxic and genotoxic effects of ZnO nanoparticles on garlic (Allium sativum L.): a morphological study. Nanotoxicology 6:241–248.

    Article  CAS  Google Scholar 

  20. Tkalec M, Stefanic PP, Cvjetko P, Sikic S, Pavlica M, Balen B (2014) The effects of cadmium-zinc interactions on biochemical responses in tobacco seedlings and adult plants. PLoS One 9:e87582.

    Article  CAS  Google Scholar 

  21. Wang XP, Yang XY, Chen SY, Li QQ, Wang W, Hou CJ, Gao X, Wang L, Wang SC (2016a) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in arabidopsis. Front Plant Sci.

  22. Wang Y, Wang XL, Wang C, Wang RJ, Peng F, Xiao X, Zeng J, Fan X, Kang HY, Sha LN, Zhang HQ, Zhou YH (2016b) Proteomic profiling of the interactions of Cd/Zn in the roots of dwarf Polish wheat (Triticum polonicum L.). Front Plant Sci 7:1378.

    Article  Google Scholar 

  23. Yoneyama T, Ishikawa S, Fujimaki S (2015) Route and regulation of zinc, cadmium, and iron transport in rice plants (Oryza sativa L.) during vegetative growth and grain filling: metal transporters, metal speciation, grain Cd reduction and Zn and Fe biofortification. Int J Mol Sci 16:19111–19129.

    Article  CAS  Google Scholar 

  24. Zhang YP, Xu S, Yang SJ, Chen YY (2015) Salicylic acid alleviates cadmium-induced inhibition of growth and photosynthesis through upregulating antioxidant defense system in two melon cultivars (Cucumis melo L.). Protoplasma 252:911–924.

    Article  CAS  Google Scholar 

  25. Zhang J, Guo WL, Li QQ, Wang Z, Liu SJ (2018) The effects and the potential mechanism of environmental transformation of metal nanoparticles on their toxicity in organisms. Environ Sci-Nano 5:2482–2499.

    Article  CAS  Google Scholar 

Download references


The study was supported by the Charles University research project SVV 260 416 and the project of the Ministry of Education, Youth and Sports of the Czech Republic No. 8G15003.

Author information



Corresponding author

Correspondence to Radka Podlipná.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haisel, D., Cyrusová, T., Vaněk, T. et al. The effect of nanoparticles on the photosynthetic pigments in cadmium—zinc interactions. Environ Sci Pollut Res 26, 4147–4151 (2019).

Download citation


  • ZnO nanoparticles
  • Cadmium uptake
  • Photosynthetic pigments
  • Carex vulpina