Environmental Science and Pollution Research

, Volume 24, Issue 30, pp 23825–23833 | Cite as

Oxidative environment causes molecular remodeling in embryonic heart—a metabolomic and lipidomic fingerprinting analysis

  • Shairam Manickaraj
  • Deepak Thirumalai
  • Prashanth Manjunath
  • Viswanathan Sekarbabu
  • Sivasubramanian Jeganathan
  • Lakshmikirupa Sundaresan
  • Rajalakshmi Subramaniyam
  • Manivannan Jeganathan
Research Article

Abstract

Environmental factors including pollution affect human health, and the unifying factor in determining toxicity and pathogenesis for a wide array of environmental factors is oxidative stress. Here, we created the oxidative environment with 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) and consequent cardiac remodeling in chick embryos. The metabolite fingerprint of heart tissue was obtained from Fourier transform infrared (FTIR) spectroscopic analysis. The global lipidomic analysis was done using electrospray ionization coupled with tandem mass spectrometry (ESI-MS/MS) by precursor ion scanning and neutral loss scanning methods. Further, the fatty acid levels were quantified in AAPH-treated H9c2 cardiomyoblasts with gas chromatography-mass spectrometry (GC-MS). Lipidomic fingerprinting study indicated that majority of differentially expressed phospholipids species in heart tissue belonged to ether phosphatidylcholine (ePC) species, and we conclude that excess oxidative environment may alter the phospholipid metabolism at earlier stages of cardiac remodeling.

Keywords

Oxidative stress Metabolomics Lipidomics Cardiac remodeling Mass spectrometry 

References

  1. Baker MJ, Trevisan J et al (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791CrossRefGoogle Scholar
  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917CrossRefGoogle Scholar
  3. Chen L, Zhang J et al (2014) Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9(1):e84853CrossRefGoogle Scholar
  4. Csányi G, Miller JFJ (2014) Oxidative stress in cardiovascular disease. Int J Mol Sci 15(4):6002–6008.  https://doi.org/10.3390/ijms15046002 CrossRefGoogle Scholar
  5. Donovan EL, Pettine SM et al (2013) Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol Metab Syndr 5(1):24CrossRefGoogle Scholar
  6. Dorninger F, Brodde A et al (2015) Homeostasis of phospholipids—the level of phosphatidylethanolamine tightly adapts to changes in ethanolamine plasmalogens. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1851(2):117–128CrossRefGoogle Scholar
  7. Drechsler R, Chen S-W et al (2016) HPLC-based mass spectrometry characterizes the phospholipid alterations in ether-linked lipid deficiency models following oxidative stress. PLoS One 11(11):e0167229CrossRefGoogle Scholar
  8. Engelmann B, Brautigam C et al (1994) Plasmalogen phospholipids as potential protectors against lipid peroxidation of low-density lipoproteins. Biochem Biophys Res Commun 204(3):1235–1242CrossRefGoogle Scholar
  9. Flora SJS, Mittal M et al (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128(4):501Google Scholar
  10. Haimi P, Uphoff A et al (2006) Software tools for analysis of mass spectrometric lipidome data. Anal Chem 78(24):8324–8331CrossRefGoogle Scholar
  11. Han X (2016) Lipidomics for studying metabolism. Nat Rev Endocrinol 12(11):668–679CrossRefGoogle Scholar
  12. He R-R, Li Y et al (2013) A new oxidative stress model, 2, 2-azobis (2-amidinopropane) dihydrochloride induces cardiovascular damages in chicken embryo. PLoS One 8(3):e57732CrossRefGoogle Scholar
  13. Helmy FM, Aikins A et al (2007) Studies on the endogenous phospholipids of chick embryo myocardium and their in vitro hydrolysis by endogenous phospholipases during embryogenesis. Cell Biochem Funct 25(5):571–579CrossRefGoogle Scholar
  14. Jump DB (2009) Mammalian fatty acid elongases. Lipidomics: Volume 1: Methods and Protocols: 375–389Google Scholar
  15. Jürgens G, Fell A et al (1995) Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens. Chem Phys Lipids 77(1):25–31CrossRefGoogle Scholar
  16. Karimata T, Sato D et al (2013) Fatty acid composition in fetal, neonatal, and cultured cardiomyocytes in rats. In Vitro Cell Dev Biol Anim 49(10):798–804CrossRefGoogle Scholar
  17. Li Y, Wang X-Y et al (2014) Excess ROS induced by AAPH causes myocardial hypertrophy in the developing chick embryo. Int J Cardiol 176(1):62–73CrossRefGoogle Scholar
  18. Manivannan J, Shanthakumar J et al (2013a) Effect of diosgenin on cardiac tissue lipids, trace elements, molecular changes, TNF-α and IL-6 expression in CRF rats. Biomed Prev Nutr 3(4):389–392CrossRefGoogle Scholar
  19. Manivannan J, Barathkumar TR et al (2013b) Diosgenin attenuates vascular calcification in chronic renal failure rats. Mol Cell Biochem 378(1–2):9–18CrossRefGoogle Scholar
  20. Morandat S, Bortolato M et al (2003) Plasmalogens protect unsaturated lipids against UV-induced oxidation in monolayer. Biochim Biophys Acta (BBA)-Biomembr 1616(2):137–146CrossRefGoogle Scholar
  21. Morcillo P, Esteban MÁ et al (2016) Heavy metals produce toxicity, oxidative stress and apoptosis in the marine teleost fish SAF-1 cell line. Chemosphere 144:225–233CrossRefGoogle Scholar
  22. Moulton PV, Yang W (2012) Air pollution, oxidative stress, and Alzheimer’s disease. J Environ Public Health 2012:472751, 9 pages.  https://doi.org/10.1155/2012/472751 CrossRefGoogle Scholar
  23. Quehenberger O, Armando AM et al (2011) High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography–mass spectrometry. Biochim Biophys Acta (BBA)-Mol Cell Biol Lipids 1811(11):648–656CrossRefGoogle Scholar
  24. Rasmiena AA, Barlow CK et al (2015) Plasmalogen modulation attenuates atherosclerosis in ApoE-and ApoE/GPx1-deficient mice. Atherosclerosis 243(2):598–608CrossRefGoogle Scholar
  25. Reiss D, Beyer K et al (1997) Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem J 323(3):807–814CrossRefGoogle Scholar
  26. Scheitz CJF, Guo Y et al (2013) Heritability and inter-population differences in lipid profiles of Drosophila melanogaster. PLoS One 8(8):e72726CrossRefGoogle Scholar
  27. Sharma B, Singh S et al (2014) Biomedical implications of heavy metals induced imbalances in redox systems. Biomed Res Int 2014:640754, 26 pages.  https://doi.org/10.1155/2014/640754 Google Scholar
  28. Singh A, Prasad R (2011) Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLoS One 6(4):e19266CrossRefGoogle Scholar
  29. Sivakumar S, Sivasubramanian J et al (2013) Aluminium induced metabolic changes in kidney and heart tissue of mice: a Fourier transform infrared spectroscopy study. RSC Adv 3(43):20896–20904CrossRefGoogle Scholar
  30. Sousa B, Melo T et al (2016) Alteration in phospholipidome profile of myoblast H9c2 cell line in a model of myocardium starvation and ischemia. J Cell Physiol 231(10):2266–2274CrossRefGoogle Scholar
  31. Stanković MN, Mladenović D et al (2014) The effects of α-lipoic acid on liver oxidative stress and free fatty acid composition in methionine–choline deficient diet-induced NAFLD. J Med Food 17(2):254–261CrossRefGoogle Scholar
  32. Stenvinkel P, Diczfalusy U et al (2004) Phospholipid plasmalogen, a surrogate marker of oxidative stress, is associated with increased cardiovascular mortality in patients on renal replacement therapy. Nephrol Dial Transplant 19(4):972–976CrossRefGoogle Scholar
  33. Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248CrossRefGoogle Scholar
  34. Tsutsui H, Kinugawa S et al (2011) Oxidative stress and heart failure. Am J Phys Heart Circ Phys 301(6):H2181–H2190Google Scholar
  35. Wu Y-C, Lin Y-C et al (2015) Association between air pollutants and dementia risk in the elderly. Alzheimers Dement: Diagn Assess Dis Monit 1(2):220–228Google Scholar
  36. Yang K, Zhao Z et al (2007) Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS One 2(12):e1368CrossRefGoogle Scholar
  37. Zhou Z, Marepally SR et al (2011) LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids 46(9):879–884CrossRefGoogle Scholar
  38. Zommara M, Tachibana N et al (1995) Inhibitory effect of ethanolamine plasmalogen on iron-and copper-dependent lipid peroxidation. Free Radic Biol Med 18(3):599–602CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shairam Manickaraj
    • 1
  • Deepak Thirumalai
    • 1
  • Prashanth Manjunath
    • 1
  • Viswanathan Sekarbabu
    • 2
  • Sivasubramanian Jeganathan
    • 3
  • Lakshmikirupa Sundaresan
    • 1
  • Rajalakshmi Subramaniyam
    • 1
  • Manivannan Jeganathan
    • 1
    • 4
  1. 1.AU-KBC Research CentreMIT Campus of Anna UniversityChennaiIndia
  2. 2.Microtherapeutics Research LabChennaiIndia
  3. 3.PG and Research Department of PhysicsMadura CollegeMaduraiIndia
  4. 4.Environmental Health and Toxicology Lab, Department of Environmental Sciences, School of Life SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations