Environmental Science and Pollution Research

, Volume 24, Issue 30, pp 24029–24037 | Cite as

The herbicides trifluralin and tebuthiuron have no genotoxic or mutagenic potential as evidenced by genetic tests

  • Mariana Furio Franco-Bernardes
  • Otávio Pelegrino Rocha
  • Lilian Cristina Pereira
  • Maria Júlia Tasso
  • Gabriela Meireles
  • Danielle Palma de Oliveira
  • Daniel Junqueira Dorta
Research Article


Brazil has been the largest world consumer of pesticides since 2008, followed by the USA. The herbicides trifluralin and tebuthiuron have been widely applied in agriculture. These herbicides are selective for some plant species, and their use brings various benefits. However, the genotoxic and mutagenic effects of tebuthiuron on non-target organisms are poorly known, and in addition, the effects of trifluralin must be better investigated. Therefore, this study employed genetic tests including the comet assay and micronucleus test to evaluate the genotoxic effects of trifluralin and tebuthiuron on HepG2 cells. In addition, we have used the Ames test to assess the mutagenic effects of the herbicides on the TA97a, TA98, TA100, and TA1535 strains of Salmonella typhimurium. On the basis of the comet assay and the micronucleus test, trifluralin did not cause genetic damage to HepG2 cells. In addition, trifluralin did not impact the tested S. typhimurium strains. Regarding tebuthiuron, literature has shown that this herbicide damaged DNA in Oreochromis niloticus. Nevertheless, we have found that tebuthiuron was not genotoxic to either HepG2 cells or the S. typhimurium strains. Therefore, neither trifluralin nor tebuthiuron exerted genotoxic or mutagenic potential at the tested conditions.


Comet assay Micronucleus Ames test HepG2 Salmonella typhimurium 



The opinions, assumptions, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of FAPESP.

Also, the authors wish to thank the Environmental Agency of São Paulo (Companhia Ambiental do Estado de São Paulo – CETESB) for providing the Salmonella strains. This article does not necessarily reflect the view of CETESB and no official endorsement should be inferred.


The authors would like to thank the Brazilian foundation “Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP” (2012/15220-3) for their financial support for this project.


  1. Albanis TA, Hela DG, Sakellarides TM, Konstantinou IK (1998) Monitoring of pesticide residues and their metabolites in surface and underground waters of Imathia (N. Greece) by means of solid-phase extraction disks and gas chromatography. J Chromatogr A 823(1):59–71. CrossRefGoogle Scholar
  2. ANVISA. Agência Nacional de Vigilância Sanitária (2013) Programa de Análise de Resíduos de Agrotóxicos em Alimentos (PARA). Relatório de Atividades de 2011 e 2012. Accessed 10 May 2017
  3. Araldi RP, Melo TC, Mendes TB, Sá Júnior PL, Nozima BHN, Ito ET, Carvalho RF, Souza EB, Stocco RC (2015) Using the comet and micronucleous assay for genotoxicity studies: a review. Biomed Pharmacother 72:74–82. CrossRefGoogle Scholar
  4. Bony S, Gillet C, Bouchez A, Margoum C, Devaux A (2008) Genotoxic pressure of vineyard pesticides in fish: field and mesocosm surveys. Aquat Toxicol 89:197–203. CrossRefGoogle Scholar
  5. Cavalcante DGSM, Martinez CBR, Sofia SH (2008) Genotoxic effects of roundup® on the fish Prochilodus lineatus. Mutat Res 655:41–46. CrossRefGoogle Scholar
  6. Dores EF, Navickiene S, Cunha ML, Carbo L, Ribeiro ML, De-Lamonica-Freire EM (2006) Multiresidue determination of herbicides in environmental waters from primavera do Leste region (middle west of Brazil) by SPE-GC-NPD. J Braz Chem Soc 17(5):866–873. CrossRefGoogle Scholar
  7. EPA. Environmental Protection Agency (1994) Reregistration Eligibility Decision (RED) Tebuthiuron. Accessed 06 May 2017
  8. EPA. Environmental Protection Agency (1996) Reregistration Eligibility Decision (RED) Trifluralin. Accessed 06 May 2017
  9. EPA. Environmental Protection Agency (2017) Pesticides industry. Sales and usage 2008–2012 market estimates. Accessed 09 May 2017
  10. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95. CrossRefGoogle Scholar
  11. Franco-Bernardes MF, Maschio LR, Azeredo-Oliveira MTV, Almeida EA (2014) Biochemical and genotoxic effects of a commercial formulation of the herbicide tebuthiuron in Oreochromis niloticus of different sizes. Ecotoxicol Environ Contam 9(1):59–67. Google Scholar
  12. Franco-Bernardes MF, Pazin M, Pereira LC, Dorta DJ (2015) Impact of pesticides on environmental and human health. In: Andreazza AC, Scola G (Eds).Toxicology studies—cells, drugs and environment. In tech. doi:
  13. Garriott ML, Adams ER, Probst GS, Emmerson JL, Oberly TJ, Kindig DEF, Neal SB, Bewsey BJ, Rexroat MA (1991) Genotoxicity studies on the preemergence herbicide trifluralin. Mutat Res 260:187–193. CrossRefGoogle Scholar
  14. Gebel T, Kevekortes S, Pav K, Edenharder R, Dunkelberg H (1997) In vivo genotoxicity of selected herbicides in the mouse bone-marrow micronucleus test. Arch Toxicol 71:193–197. CrossRefGoogle Scholar
  15. Gomes MAF, Spadotto CA, Lanchote VL (2001) Ocorrência do herbicida tebuthiuron na água subterrânea da microbacia do Córrego Espraiado. Ribeirão Preto-SP Pesticidas: R Ecotoxicol e Meio Ambiente 11:65–76. Google Scholar
  16. Heddle JA, Hite M, Jrkhart B, Macgregor JT, Salamone MF (1983) The indution of micronuclei as a measure of genotoxicity. Mutat Res 123:61–118. CrossRefGoogle Scholar
  17. Hernández AF, Parrón T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145. CrossRefGoogle Scholar
  18. Hossain MM (2016) Recent perspective of herbicide: review of demand and adoption in world agriculture. J Bangladesh Agric Univ 13(1):19–30. CrossRefGoogle Scholar
  19. Houk VS (1992) The genotoxicity of industrial wastes and effluents: a review. Mutat Res Rev Genet Toxicol 277(2):91–138. CrossRefGoogle Scholar
  20. IARC, International Agency on Cancer Research (1991) Monographs on the evaluation of carcinogenic risks to humans. Trifluralin 53:515–534Google Scholar
  21. IBAMA. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (2017) Relatórios de comercialização de agrotóxicos. Accessed 10 May 2017
  22. Kammann U, Bunke M, Steinhart H, Theobald N (2001) A permanent fish cell line (EPC) for genotoxicity testing of marine sediments with the comet assay. Mutat Res 498:61–77. Google Scholar
  23. Konen S, Çavas T (2008) Genotoxicity testing of the herbicide trifluralin and its commercial formulation treflan using the piscine micronucleus test. Environ Mol Mutagen 49:434–438. CrossRefGoogle Scholar
  24. Laabs V, Amelung W, Pinto A, Wantzen M, Silva CJ (2002) Zech W (2002) pesticides in surface water, sediment, and rainfall of the northeastern Pantanal Basin. Brazil J Environ Qual 31:1636–1648. CrossRefGoogle Scholar
  25. Lee RF, Steinert S (2003) Use of the single cell gel electrophoresis/comet assay for detecting DNA damage in aquatic (marine and freshwater) animals. Mutat Res Rev Mutat Res 544(1):43–64. CrossRefGoogle Scholar
  26. Lewis SE, Brodie JE, Bainbridge ZT, Rohde KW, Davis AM, Masters BL, Maughan M, Devlin MJ, Mueller JF, Schaffelke B (2009) Herbicides: a new threat to the great barrier reef. Environ Pollut 157(8):2470–2484. CrossRefGoogle Scholar
  27. Lima PLR, Magalhães CAS, Carvalho RF, Lima LA, Lima JM, Andrade LAB (2012) Trifluralin leaching in soils cultivated with sugarcane irrigated by sub-surface drip system. Irriga. Braz J Irrig Drain 17(1):39–45.  10.15809/irriga.2012v17n1p39 Google Scholar
  28. Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215. CrossRefGoogle Scholar
  29. Mortelmans K, Zeiger E (2000) The Ames salmonella/microsome mutagenicity assay. Mutat Res 455:29–60. CrossRefGoogle Scholar
  30. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. CrossRefGoogle Scholar
  31. O'brien NM, Woods JA, Aherne SA, O'callaghan YC (2000) Cytotoxicity, genotoxicity and oxidative reactions in cell-culture models: modulatory effects of phytochemicals. Biochem Soc Trans 28(2):22–26. CrossRefGoogle Scholar
  32. OECD. Organization for Economic Cooperation and Development (1997) Guideline for the testing of chemicals. Bacterial Reverse Mutation Test. July 471, 1997. Accessed 05 May 2017
  33. Pilinskaia MA (1987) Evaluation of the cytogenetic effect of the herbicide treflan and of a number of its metabolites on mammalian somatic cells. Tsit Genet 21:131–135Google Scholar
  34. Rawn DFK, Halldorson THJ, Woychuck RN, Muir DCG (1999) Pesticides in the Red River and its tributaries in southern Manitoba, 1993-95. Water Qual Res J Can 34(2):183–219 http://digital.Library.Mcgill.Ca/WQRJ/pdfs/WQRJ_Vol_34_No_2_Art_01.Pdf. Accessed 28 june 2016Google Scholar
  35. Ribas G, Frenzilli G, Barale R, Marcos R (1995) Herbicide-induced DNA damage in human lymphocytes evaluated by the single-cell gel electrophoresis (SCGE) assay. Mutat Res 344:41–54. CrossRefGoogle Scholar
  36. Ribas G, Surralles J, Carbonell E, Xamena N, Creus A, Marcos R (1996) Genotoxic evaluation of the herbicide trifluralin on human lymphocytes exposed in vitro. Mutat Res 371:15–21. CrossRefGoogle Scholar
  37. Rigotto RM, Vasconcelos DP, Rocha MM (2014) Pesticide use in Brazil and problems for public health. Cad Saúde Pública, Rio de Janeiro 30(7):1–3. CrossRefGoogle Scholar
  38. Singh NP, Mccoy MT, Tice RRE, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175(1):184–191. CrossRefGoogle Scholar
  39. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae HY, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221CrossRefGoogle Scholar
  40. Toccalino PL, Gilliom RJ, Lindsey BD, Rupert MG (2014) Pesticides in groundwater of the United States: decadal-scale changes, 1993–2011. Groundwater 52(S1):112–125. CrossRefGoogle Scholar
  41. WAP. World Agricultural Pesticides (2014) Industry market research for business leaders, strategists, decision makers, 399-411. The Freedonia Group, Inc. 767 Beta Drive. Cleveland, OH, pp 44143–2326Google Scholar
  42. Zhong G, Tang J, Xie Z, Mi W, Chen Y, Möller A, Sturm R, Zhang G, Ebinghaus R (2015) Selected current-use pesticides (CUPs) in coastal and offshore sediments of Bohai and yellow seas. Environ Sci Pollut Res 22(3):1653–1661. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mariana Furio Franco-Bernardes
    • 1
  • Otávio Pelegrino Rocha
    • 1
  • Lilian Cristina Pereira
    • 1
    • 2
  • Maria Júlia Tasso
    • 3
  • Gabriela Meireles
    • 1
  • Danielle Palma de Oliveira
    • 1
    • 4
  • Daniel Junqueira Dorta
    • 3
    • 4
  1. 1.School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  2. 2.Faculdade de Ciências Agronômicas, Fazenda Experimental de LageadoUniversidade Estadual Paulista “Júlio de Mesquita Filho”BotucatuBrazil
  3. 3.Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto (FFCLRP – USP)Ribeirão PretoBrazil
  4. 4.National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of ChemistryAraraquaraBrazil

Personalised recommendations