Environmental Science and Pollution Research

, Volume 24, Issue 30, pp 23620–23635 | Cite as

Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons

Research Article
  • 196 Downloads

Abstract

Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

Keywords

Asymmetrical street canyon Building height ratio Buildings around streets Ventilation flux Outdoor effective source intensity Natural ventilation 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51578121 and No. 51478098), the Innovation Foundation of Shanghai Education Commission (Grant No. 14ZZ073), and the Project of Shanghai Universities Young Teacher Training Scheme (Grant No. ZZGCD15087). The authors would like to thank Dr. D. Gottfried for providing valuable comments on the manuscript.

References

  1. Argyropoulos CD, Markatos NC (2015) Recent advances on the numerical modelling of turbulent flows. Appl Math Model 39:693–732. doi: 10.1016/j.apm.2014.07.001 CrossRefGoogle Scholar
  2. Ai ZT, Mak CM (2015) From street canyon microclimate to indoor environmental quality in naturally ventilated urban buildings: issues and possibilities for improvement. Build Environ 94:489–503. doi: 10.1016/j.buildenv.2015.10.008 CrossRefGoogle Scholar
  3. Ai ZT, Mak CM (2016) Large eddy simulation of wind-induced interunit dispersion around multistory buildings. Indoor Air 26:259–273. doi: 10.1111/ina.12200 CrossRefGoogle Scholar
  4. Awbi HB (2003) Ventilation of buildings. Taylor & Francis, New YorkGoogle Scholar
  5. Bady M, Kato S, Takahashi T, Huang H (2011) An experimental investigation of the wind environment and air quality within a densely populated urban street canyon. J Wind Eng Ind Aerod 99:857–867. doi: 10.1016/j.jweia.2011.06.005 CrossRefGoogle Scholar
  6. Baik JJ, Kim JJ (2002) On the escape of pollutants from urban street canyons. Atmos Environ 36:527–536. doi: 10.1016/S1352-2310(01)00438-1 CrossRefGoogle Scholar
  7. Behera SN, Cheng J, Huang X, Zhu Q, Liu P, Balasubramanian R (2015) Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmos Environ 122:259–271. doi: 10.1016/j.atmosenv.2015.09.053 CrossRefGoogle Scholar
  8. Blocken B, Stathopoulos T, Carmeliet J (2007) CFD simulation of the atmospheric boundary layer: wall function problems. Atmos Environ 41:238–252. doi: 10.1016/j.atmosenv.2006.08.019 CrossRefGoogle Scholar
  9. Buccolieri R, Sandberg M, Di Sabatino S (2010) City breathability and its link to pollutant concentration distribution within urban-like geometries. Atmos Environ 44:1894–1903. doi: 10.1016/j.atmosenv.2010.02.022 CrossRefGoogle Scholar
  10. Caciolo M, Cui S, Stabat P, Marchio D (2013) Development of a new correlation for single-sided natural ventilation adapted to leeward conditions. Energ Buildings 60:372–382. doi: 10.1016/j.enbuild.2013.01.024 CrossRefGoogle Scholar
  11. Chang CH, Meroney RN (2001) Numerical and physical modeling of bluff body flow and dispersion in urban street canyons. J Wind Eng Ind Aerod 89:1325–1334. doi: 10.1016/S0167-6105(01)00129-5 CrossRefGoogle Scholar
  12. Chang CH, Meroney RN (2003) Concentration and flow distributions in urban street canyons: wind tunnel and computational data. J Wind Eng Ind Aerod 91:1141–1154. doi: 10.1016/S0167-6105(03)00056-4 CrossRefGoogle Scholar
  13. Chen L, Hang J, Sandberg M, Claesson L, Di Sabatino S, Wigo H (2017) The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Build Environ 118:344–361. doi: 10.1016/j.buildenv.2017.03.042 CrossRefGoogle Scholar
  14. Chaloulakou A, Mavroidis I (2002) Comparison of indoor and outdoor concentrations of CO at a public school. Evaluation of an indoor air quality model. Atmos Environ 36:1769–1781. doi: 10.1016/S1352-2310(02)00151-6 CrossRefGoogle Scholar
  15. Chen Q (2009) Ventilation performance prediction for buildings: a method overview and recent applications. Build Environ 44:848–858. doi: 10.1016/j.buildenv.2008.05.025 CrossRefGoogle Scholar
  16. Cheung JOP, Liu CH (2011) CFD simulations of natural ventilation behaviour in high-rise buildings in regular and staggered arrangements at various spacings. Energ Buildings 43:1149–1158. doi: 10.1016/j.enbuild.2010.11.024 CrossRefGoogle Scholar
  17. Chiu YH, Etheridge DW (2007) External flow effects on the discharge coefficients of two types of ventilation opening. J Wind Eng Ind Aerod 95:225–302. doi: 10.1016/j.jweia.2006.06.013 CrossRefGoogle Scholar
  18. Cui DJ, Mak CM, Kwok KCS, Ai ZT (2016) CFD simulation of the effect of an upstream building on the inter-unit dispersion in a multi-story building in two wind directions. J Wind Eng Ind Aerod 150:31–41. doi: 10.1016/j.jweia.2016.01.007 CrossRefGoogle Scholar
  19. de Dear RJ, Akimoto T, Arens EA, Brager G, Candido C, Cheong KWD, Li B, Nishihara N, Sekhar SC, Tanabe S, Toftum J, Zhang H, Zhu Y (2013) Progress in thermal comfort research over the last twenty years. Indoor Air 23:442–461. doi: 10.1111/ina.12046 CrossRefGoogle Scholar
  20. Etheridge D (2011) Natural ventilation of buildings: theory. Measurement and Design, LondonCrossRefGoogle Scholar
  21. Evola G, Popov V (2006) Computational analysis of wind driven natural ventilation in buildings. Energ Buildings 38:491–501. doi: 10.1016/j.enbuild.2005.08.008 CrossRefGoogle Scholar
  22. Fluent (2006) Fluent 6.3. User’s Guide. Fluent Inc., Lebanon, New HampshireGoogle Scholar
  23. Franke J (2006) Recommendations of the COST action C14 on the use of CFD in predicting pedestrian wind environment. In: The fourth international symposium on computational wind engineering. Japan Association for Wind Engineering, Yokohama, p 529–532Google Scholar
  24. Goryainova Z, Vukovic G, Urosevic A, Vergel K, Ostrovnaya T, Frontasyeva M, Zechmeister H (2016) Assessment of vertical element distribution in street canyons using the moss Sphagnum girgensohnii: a case study in Belgrade and Moscow cities. Atmos Pollut Res 7:690–697. doi: 10.1016/j.apr.2016.02.013 CrossRefGoogle Scholar
  25. Gu Z, Zhang Y, Cheng Y, Lee S (2011) Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build Environ 46:2657–2665. doi: 10.1016/j.buildenv.2011.06.028 CrossRefGoogle Scholar
  26. Hajra B, Stathopoulos T, Bahloul A (2011) The effect of upstream buildings on the near-field pollutant dispersion in the built environment. Atmos Environ 45:4930–4949. doi: 10.1016/j.atmosenv.2011.06.008 CrossRefGoogle Scholar
  27. Hang J, Li Y (2010) Wind conditions in idealized building clusters: macroscopic simulations using a porous turbulence model. Bound-Layer Meteorol 136:129–159. doi: 10.1007/s10546-010-9490-3 CrossRefGoogle Scholar
  28. Hang J, Luo ZW, Wang XM, He LJ, Wang BM, Zhu W (2017) The influence of street layouts and viaduct settings on daily CO exposure and intake fraction in idealized urban canyons. Environ Pollut 220:72–86. doi: 10.1016/j.envpol.2016.09.024 CrossRefGoogle Scholar
  29. Horan JM, Finn DP (2008) Sensitivity of air change rates in a naturally ventilated atrium space subject to variations in external wind speed and direction. Energ Buildings 40:1577–1585. doi: 10.1016/j.enbuild.2008.02.013 CrossRefGoogle Scholar
  30. Huang H, Akutsu Y, Arai M, Tamura M (2000) A two-dimensional air quality model in an urban street canyon: evaluation and sensitivity analysis. Atmos Environ 34:689–698. doi: 10.1016/S1352-2310(99)00333-7 CrossRefGoogle Scholar
  31. Huang Y, He W, Kim CN (2015) Impacts of shape and height of upstream roof on airflow and pollutant dispersion inside an urban street canyon. Environ Sci Pollut Res 22:2117–2137. doi: 10.1007/s11356-014-3422-6 CrossRefGoogle Scholar
  32. Iqbal QMZ, Chan ALS (2016) Pedestrian level wind environment assessment around group of high-rise cross-shaped buildings: effect of building shape, separation and orientation. Build Environ 101:45–63. doi: 10.1016/j.buildenv.2016.02.015 CrossRefGoogle Scholar
  33. Ji W, Zhao B (2014) Numerical study of the effects of trees on outdoor particle concentration distributions. Build Simul 7:417–427. doi: 10.1007/s12273-014-0180-9 CrossRefGoogle Scholar
  34. Jiang Y, Alexander D, Jenkins H, Arthur R, Chen Q (2003) Natural ventilation in buildings: measurement in a wind tunnel and numerical simulation with large eddy simulation. J Wind Eng Ind Aerod 91:331–353. doi: 10.1016/S0167-6105(02)00380-X CrossRefGoogle Scholar
  35. Kim HG, Patel VC (2000) Test of turbulence models for wind flow over terrain with separation and recirculation. Bound-Layer Meteorol 94:5–21. doi: 10.1023/A:1002450414410 CrossRefGoogle Scholar
  36. Koponen IK, Asmi A, Keronen P, Puhto K, Kulmala M (2001) Indoor air measurement campaign in Helsinki, Finland 1999-the effect of outdoor air pollution on indoor air. Atmos Environ 35:1465–1477. doi: 10.1016/S1352-2310(00)00338-1 CrossRefGoogle Scholar
  37. Kotani H, Goto T, Ohba M, Kurabuchi T (2009) Review of cross-ventilation research papers-from the working group for natural ventilation and cross-ventilation of the Architectural Institute of Japan. Inter J Vent 8:233–241. doi: 10.1080/14733315.2009.11683848 CrossRefGoogle Scholar
  38. Launder B, Spalding D (1974) Lectures in mathematical model of turbulence. Academic Press, LondonGoogle Scholar
  39. Lawrence AJ, Masih A, Taneja A (2005) Indoor/outdoor relationships of carbon monoxide and oxides of nitrogen in domestic homes with roadside, urban and rural locations in a central Indian region. Indoor Air 15:76–82. doi: 10.1111/j.1600-0668.2004.00311.x CrossRefGoogle Scholar
  40. Li X, Leung DYC, Liu CH, Lam KM (2008) Physical modeling of flow field inside urban street canyons. J Appl Meteorol Clim 47:2058–2067. doi: 10.1175/2007JAMC1815.1 CrossRefGoogle Scholar
  41. Li X, Liu CH, Leung DYC (2005) Development of a k- model for the determination of air exchange rates for street canyons. Atmos Environ 39:7285–7296. doi: 10.1016/j.atmosenv.2005.09.007 CrossRefGoogle Scholar
  42. Lien FS, Yee E (2004) Numerical modelling of the turbulent flow developing within and over a 3-D building array, part I: a high-resolution Reynolds-averaged Nervier-Stokes approach. Bound-Layer Meteorol 112:427–466. doi: 10.1023/B:BOUN.0000030654.15263.35 CrossRefGoogle Scholar
  43. Lin B, Liu Y, Wang Z, Pei Z, Davies M (2016) Measured energy use and indoor environment quality in green office buildings in China. Energ Buildings 129:9–18. doi: 10.1016/j.enbuild.2016.07.057 CrossRefGoogle Scholar
  44. Liu CH, Barth MC, Leung DYC (2004) Large-eddy simulation of flow and pollutant transport in street canyons of different building-height-to-street-width ratios. J Appl Meteorol 43:1410–1424. doi: 10.1175/JAM2143.1 CrossRefGoogle Scholar
  45. Liu X, Niu J, Kwok KCS (2013) Evaluation of RANS turbulence models for simulating wind-induced mean pressures and dispersions around a complex-shaped high-rise building. Build Simul 6:151–164. doi: 10.1007/s12273-012-0097-0 CrossRefGoogle Scholar
  46. Mensink C, De Ridder KD, Deutsch F, Lefeber F, Van de Vel K (2008) Examples of scale interactions in local, urban, and regional air quality modelling. Atmos Res 89:351–357. doi: 10.1016/j.atmosres.2008.03.020 CrossRefGoogle Scholar
  47. Meroney RN, Pavageau M, Rafailidis S, Schatzmann M (1996) Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons. J Wind Eng Ind Aerod 62:37–56. doi: 10.1016/S0167-6105(96)00057-8 CrossRefGoogle Scholar
  48. Murena F, Favale G, Vardoulakis S, Solazzo E (2009) Modelling dispersion of traffic pollution in a deep street canyon: application of CFD and operational models. Atmos Environ 43:2303–2311. doi: 10.1016/j.atmosenv.2009.01.038 CrossRefGoogle Scholar
  49. Ng WY, Chau CK (2014) A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons. Sci Total Environ 468-469:429–448. doi: 10.1016/j.scitotenv.2013.08.077 CrossRefGoogle Scholar
  50. Patankar SV, Spalding DB (1972) A calculation procedure for heat mass and momentum transfer in three-dimensional parabolic flows. Int J Heat Mass Tran 15:1787–1806. doi: 10.1016/0017-9310(72)90054-3 CrossRefGoogle Scholar
  51. Price HD, Arthur R, BeruBe KA, Jones TP (2014) Linking particle number concentration (PNC), meteorology and traffic variables in a UK street canyon. Atmos Res 147-148:133–144. doi: 10.1016/j.atmosres.2014.05.008 CrossRefGoogle Scholar
  52. Qaid A, Ossen DR (2015) Effect of asymmetrical street aspect ratios on microclimates in hot, humid regions. Int J Biometeorol 59:657–677. doi: 10.1007/s00484-014-0878-5 CrossRefGoogle Scholar
  53. Ramponi R, Blocken B (2012) CFD simulation of cross-ventilation for a generic isolated building: impact of computational parameters. Build Environ 53:34–48. doi: 10.1016/j.buildenv.2012.01.004 CrossRefGoogle Scholar
  54. Roache PJ (1994) Perspective: a method for uniform reporting of grid refinement studies. J Fluid Eng 116:405–413. doi: 10.1115/1.2910291 CrossRefGoogle Scholar
  55. Scungio M, Arpino F, Cortellessa G, Buonanno G (2015) Detached eddy simulation of turbulent flow in isolated street canyons of different aspect ratios. Atmos Pollut Res 6:351–364. doi: 10.5094/APR.2015.039 CrossRefGoogle Scholar
  56. Snyder WH (1972) Similarity criteria for the application of fluid models to the study of air pollution meteorology. Bound-Layer Meteorol 3:113–134. doi: 10.1007/BF00769111 CrossRefGoogle Scholar
  57. Tominaga Y, Stathopoulos T (2007) Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos Environ 41:8091–8099. doi: 10.1016/j.atmosenv.2007.06.054 CrossRefGoogle Scholar
  58. Tominaga Y, Mochida A, Yoshie R, Kataoka H, Nozu T, Yoshikawa M, Shirasawa T (2008) AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerod 96:1749–1761. doi: 10.1016/j.jweia.2008.02.058 CrossRefGoogle Scholar
  59. Tong Z, Chen Y, Malkawi A, Adamkiewicz G, Spengler JD (2016) Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Environ Int 89-90:138–146. doi: 10.1016/j.envint.2016.01.016 CrossRefGoogle Scholar
  60. Wang H, Chen Q (2012) A new empirical model for predicting single-sided, wind-driven natural ventilation in buildings. Energ Buildings 54:386–394. doi: 10.1016/j.enbuild.2012.07.028 CrossRefGoogle Scholar
  61. Wichmann J, Lind T, Nilsson MAM, Bellander T (2010) PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmos Environ 44:4536–4544. doi: 10.1016/j.atmosenv.2010.08.023 CrossRefGoogle Scholar
  62. Yang F, Kang Y, Gao Y, Zhong K (2015) Numerical simulations of the effect of outdoor pollutants on indoor air quality of buildings next to a street canyon. Build Environ 87:10–22. doi: 10.1016/j.buildenv.2015.01.008 CrossRefGoogle Scholar
  63. Yang F, Gao Y, Zhong K, Kang Y (2016) Impacts of cross-ventilation on the air quality in street canyons with different building arrangements. Build Environ 104:1–12. doi: 10.1016/j.buildenv.2016.04.013 CrossRefGoogle Scholar
  64. Yassin M (2013) Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction. Environ Sci Pollut Res 20:3975–3988. doi: 10.1007/s11356-012-1270-9 CrossRefGoogle Scholar
  65. Zhong K, Yang F, Kang Y (2013) Indoor and outdoor relationships of CO concentrations in natural ventilating rooms in summer, Shanghai. Build Environ 62:69–76. doi: 10.1016/j.buildenv.2013.01.010 CrossRefGoogle Scholar
  66. Zhong J, Cai X, Bloss WJ (2016) Coupling dynamics and chemistry in the air pollution modelling of street canyons: a review. Environ Pollut 214:690–704. doi: 10.1016/j.envpol.2016.04.052 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Fang Yang
    • 1
    • 2
  • Ke Zhong
    • 2
  • Yonghang Chen
    • 2
  • Yanming Kang
    • 2
  1. 1.College of Mechanical EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.School of Environmental Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations