Skip to main content

Advertisement

Log in

Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During the past 10 years, exploiting engineered nanoparticles in agricultural sector has been rapidly increased. Nanoparticles are used to increase the productivity of different crops particularly under biotic and abiotic stresses. This study aims to test the ability of nanosilica (NS) to ameliorate the detrimental impact of Na+ with different concentrations on the seed germination and the growth of common bean seedlings. Five doses of Na+ have been prepared from NaCl, i.e., 1000, 2000, 3000, 4000, and 5000 mg L−1, and distilled water was applied as a control. Seeds and seedlings were treated with three different NS concentrations (100, 200, and 300 mg L−1). The results proved that Na+ concentrations had detrimental effects on all measured parameters. However, treating seeds and seedlings with NS improved their growth and resulted in higher values for all measurements. For instance, the addition of 300 mg L−1 NS leads to an increase of the final germination percentage, vigor index, and germination speed for seeds irrigated with 5000 mg Na+ L−1 by 19.7, 80.7, and 22.6%, respectively. Although common bean seedlings could not grow at the highest level of Na+, fortification seedlings with NS helped them to grow well under 5000 mg L−1 of Na+. An increase of 11.1 and 23.1% has been measured for shoot and root lengths after treating seedlings with 300 mg L−1 NS under irrigation with 5000 mg Na+ L−1 solutions, and also at the same treatment, shoot and root dry masses are enhanced by 110.9 and 328.0%, respectively. These results proved the importance of using NS to relieve the detrimental effects of Na+-derived salinity. This finding could be reinforced by low Na content which was measured in plant tissues after treating seedlings with 300 mg L−1 of NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdul Qados AMS (2010) Effect of salt stress on plant growth and metabolism of bean plant Vicia faba (L.) J Saudi Soc Agric Sci 10:7–15

    Google Scholar 

  • An P, Li X, Zheng Y, Matsuura A, Abe J, Eneji AE, Tanimoto E, Inanaga S (2014) Effects of NaCl on root growth and cell wall composition of two soya bean cultivars with contrasting salt tolerance. Agron Crop Sci 200:212–218

    Article  CAS  Google Scholar 

  • Asmare HA, Ambo E (2013) Impact of salinity on tolerance, vigor, and seedling relative water content of haricot bean (Phaseolus vulgaris L.) cultivars. Plant Sci 1(3):22–27

    Google Scholar 

  • Assimakopoulou A, Salmas I, Nifakos K (2015) Effect of salt stress on three green bean (Phaseolus vulgaris L.) cultivars. Not Bot Horti Agrobo 43(1):113–118

    CAS  Google Scholar 

  • Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.) Pol J Chem Technol 16(3):25–29

    Article  CAS  Google Scholar 

  • Barrios AN, Ritchie J, Smucker AJ (1998) El efecto de sequía en el crecimiento, la fotosíntesis y la intercepción de luz en frijol común. Agronomía Mesoam 9(2):01–08

    Google Scholar 

  • Bayuelo-Jiménes JS, Debouck DG, Lynch JP (2002) Salinity tolerance of Phaseolus species during early vegetative growth. Crop Sci 42:2184–2192

    Article  Google Scholar 

  • Borém A, Carneiro JES (1999) A cultura. In: Vieira C, Paulajr TJ, Borém A (eds) Feijão: aspectos gerais e cultura no estado de Minas Gerais. UFV, Viçosa, pp 13–17

    Google Scholar 

  • Carlisle EM (1997) Silicon. In: BLO D, Sunde RA (eds) Handbook of nutritionally essential minerals. Marcel Dekker, New York, pp 603–618

    Google Scholar 

  • Cokkizgin A (2012) Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Not Bot Horti Agrobo Cluj-Napoca 40(1):177–182

    CAS  Google Scholar 

  • Cottenie A (1980) Soil and plant testing as a basis of fertilizer recommendations. FAO Soils Bulletin 38/2. Rome, Italy, pp 250

  • Czabator FJ (1962) Germination value: an index combining speed and completeness of pine seed germination. Forest Sci 8:386–396

  • Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160

    Article  CAS  Google Scholar 

  • Farooq MA, Dietz KJ (2015) Silicon as versatile player in plant and human biology: overlooked and poorly understood. Front Plant Sci 6:1–14

    Article  Google Scholar 

  • Frantz JM, Locke JC, Datnoff L, Omer M, Widrig A, Sturtz D, Horst L, Krause CR (2008) Detection, distribution, and quantification of silicon in floricultural crops utilizing three distinct analytical methods. Commun Soil Sci Plant Anal 39:2734–2751

    Article  CAS  Google Scholar 

  • Gama PBS, Inanaga S, Tanaka K, Nakazawa R (2007) Physiological response of common bean (Phaseolus vulgaris L.) seedlings to salinity stress. Afr J Biotechnol 6(2):079–088

    CAS  Google Scholar 

  • Gengmao Z, Shihui L, Xing S, Yizhou W, Zipan C (2015) The role of silicon in physiology of the medicinal plant (Lonicera japonica L.) under salt stress. Sci Report 3(5):12696. doi:10.1038/srep12696

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The alleviation effect of silhcon on seed germination and seedling growth of tomato under salinity stress. Veg Crops Res Bull 76(119):126

    Google Scholar 

  • Kaymakanova M (2009) Effect of salinity on germination and physiology in bean (Phaseolus vulgaris L.) Biotechnol 23:326–329

    Google Scholar 

  • Kaymakanova M, Stoeva N (2008) Physiological reaction of bean plants (Phaseolus vulgaris L.) to salt stress. General and Appl Plant Physiol 34(3–4):177–188

    CAS  Google Scholar 

  • Khajeh-hosseini M, Powell AA, Bingham IJ (2003) The interaction between salinity stress and seed vigour during germination of soybean seeds. Seed Sci Technol 31:715–725

    Article  Google Scholar 

  • Khalaki MA, Ghorbani A, Moameri M (2016) Effects of silica and silver nanoparticles on seed germination traits of Thymus kotschyanus in laboratory conditions. J Rangel Sci 6(3):221–231

    Google Scholar 

  • Khan MH, Panda SK (2008) Alterations in root lipid peroxidation and antioxidative responses in two rice cultivars under NaCl-salinity stress. Acta Physiol Plant 30(1):81–89

    Article  CAS  Google Scholar 

  • Kharb RPS, Lather BPS, Deswal DP (1994) Prediction of field emergence through heritability and genetic advance of vigour parameters. Seed Sci Technol 22:461–466

  • Korndörfer GH, Lepsch I (2001) Effect of silicon on plant growth and crop yield. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Vol. 8 studies in plant science. Elsevier, Amsterdam, pp 133–147

    Chapter  Google Scholar 

  • Krishnamurthy R, Anbazhagan M, Bhagwat KA (1987) Effect of NaCl toxicity of chlorophyll breakdown in rice. Indian J Agric Sci 57:567–570

    CAS  Google Scholar 

  • Li Q, Ma C, Li H, Xiao Y, Liu X (2004) Effects of soil available silicon on growth, development and physiological function of soybean. J Appl Ecol 15:73–76

    CAS  Google Scholar 

  • Liang YC, Chen QIN, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgareL.). J Plant Physiol 160:1157–1164

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:168–172

    CAS  Google Scholar 

  • Lu MMD, De Silva DMR, Peralta EK, Fajardo AN, Peralta MM (2015) Effects of nanosilica powder from rice hull ash on seed germination of tomato (Lycopersicon esculentum). Appl Res Dev 5:11–22

    Google Scholar 

  • Ma JF, Yamaji N, Mitani-Ueno N (2011) Transport of silicon from roots to panicles in plants. Proc Jpn Acad Ser B Phys Biol Sci 87:377–385

    Article  CAS  Google Scholar 

  • Mahamadou T, Champion A, Diouf D, Ourèye M (2013) NaCl effects on in vitro germination and growth of some senegalese cowpea (Vigna unguiculata L.) Walp.) cultivars. ISRN Biotechnol 2013:11. doi:10.5402/2013/382417

  • Marcos-Filho J (2015) Seed vigor testing: an overview of the past, present and future perspective. Sci Agric 72(4):363–374

    Article  Google Scholar 

  • Mauromicale G, Licandro P (2002) Salinity and temperature effects on germination, emergence and seedling growth of globe artichoke. Agronomie 22:443–450. http://dx.doi.org/10.1051/agro:2002011

  • Mazher AAM, El-Quesni FEM, Farahat MM (2007) Responses of ornamental plants and woody trees to salinity. World J Agric Sci 3(3):386–395

    Google Scholar 

  • Mena E, Leiva-Mora M, Jayawardana EKD, García L, Veitía N, Bermúdez-Caraballoso I, Collado R, Ortíz RC (2015) Effect of salt stress on seed germination and seedlings growth of Phaseolus vulgaris L. Cultivos Trop 36(3):71–74

    Google Scholar 

  • Meot-Duros L, Magné C (2008) Effect of salinity and chemical factors on seed germination in the halophyte (Crithmum maritimum L.). Plant Soil 313:83–87

    Article  CAS  Google Scholar 

  • Mozafariyan M, Haghighy M (2011) Effect Nano silicon and potassium silicate priming on tomato seeds. First congress of agricultural and new technologies

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Ologundudu AF, Adelusi AA, Adekoya KP (2013) Effect of light stress on germination and growth parameters of Corchorus olitorius, Celosia argentea, Amaranthus cruentus, Abelmoschus esculentus and Delonix regia. Not Sci Biol 5(4):468–475

    Google Scholar 

  • Orcutt DM, Nilsen ET (2000) The physiology of plants under stress: soil and biotic factors. New York, John Wiley and Sons, Inc.

    Google Scholar 

  • Paranychianakis NV, Chartzoulakis KS (2005) Irrigation of Mediterranean crops with saline water, from physiology to management practices. Agric Ecosyst Environ 106:171–187

    Article  CAS  Google Scholar 

  • Qados AMS (2015) Effects of salicylic acid on growth, yield and chemical contents of pepper (Capsicum Annuum L) plants grown under salt stress conditions. International Journal of Agriculture and Crop Sciences 8(2):107–113

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasmin A (2008) Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exp Bot 62:54–59

    Article  CAS  Google Scholar 

  • Ranal MA, Santana DG (2006) How and why to measure the germination process? Rev Bras Bot 29:1–11

  • Romero AO, Damián HMA, Rivera TJA, Báez SA, Huerta LMY, Cabrera HE (2013) The nutritional value of beans (Phaseolus vulgaris L.) and its importance for feeding of rural communities in Puebla-Mexico. Int Res Biol Sci 2(8):59–65

    Google Scholar 

  • Romero-Aranda MR, Jurado O, Cuartero J (2006) Silicon alleviates the deleterious salt effect on tomato plant grow by improving plant water status. J Plant Physiol 163:847–855

    Article  CAS  Google Scholar 

  • Roohizadeh G, Majd A, Arbabian S (2015) The effect of sodium silicate and silica nanoparticles on seed germination and some of growth indices in the Vicia faba L. Trop Plant Res 2(2):85–89

    Google Scholar 

  • Rubatzkey VE, Yamagucbi M (1997) World vegetable; principles production and nutritive values. 2nd edn, Aspen. Springer Science+Business Media Dordrecht, California, USA, pp 843. doi:10.1007/978-1-4615-6015-9

  • Sadeghi H, Khazaei F, Yar L, Sheidaei S (2012) Effect of seed osmopriming on seed germination behavior and vigor of soybean (Glycine max L.) ARPN J Agric Biol Sci 6(1):39–43

    Google Scholar 

  • Saneoka H, Shiota K, Kurban H, Chaudhary MI, Premachandra GS, Fujita K (1999) Effect of salinity on growth and solute accumulation in two wheat lines differing in salt tolerance. Soil Sci Plant Nutr 45:873–880

    Article  CAS  Google Scholar 

  • Sheldon A, Menzies NW, So HB, Dalal R (2004) The effect of salinity on plant available water. 3rd Australian New Zealand Soils Conference (December): 5. http://www.regional.org.au/au/asss

  • Shokohifard G, Sakageim KH, Matsumoto S (1989) Effect of amending materials on growth of radish plant in salinized soil. D Plant Nutr 12:119–1294

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.) Saudi J Biol Sci 21:13–17

    Article  CAS  Google Scholar 

  • Singh SP (1999) Developments in plant breeding: common bean improvement in the twenty-first century. Springer Science+Business Media B.V., Dordrecht, Springer Netherlands, p 405. doi:10.1007/978-94-015-9211-6

  • Sivritepe HO, Sivritepe N, Eris A, Turhan E (2005) The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity. Sci Hortic 106:568–581

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:1–7

    Article  Google Scholar 

  • Tahir M, Rahmatullah A, Aziz T, Ashraf M, Kanwal S, Maqsood MA (2006) Beneficial effects of silicon in wheat (Triticum aestarum L.) under salinity stress. Pak J Plant 29:431–438

    Google Scholar 

  • Tantawy AS, Salama YAM, El-Nemr MA, Abdel-Mawgoud AMR (2015) Nano silicon application improves salinity tolerance of sweet pepper plants. Int J ChemTech Res 8(10):11–17

    CAS  Google Scholar 

  • Walker L (2005) Nanotechnology for agriculture, food and the environment presentation at nanotechnology biology interface: exploring models for oversight. University of Minnesota, USA

    Google Scholar 

  • Wortmann CS (2006) Phaseolus vulgaris L. (common bean). Record from PROTA4U. Brink M, Belay G (eds) PROTA (Plant Resources of Tropical Africa/Ressources végétales de l’Afrique tropicale), Wageningen, Netherlands

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  CAS  Google Scholar 

  • Yeo AR, Flowers SA, Rao G, Welfare K, Senanayake N, Flowers TJ (1999) Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for by a reduction in the transpirational bypass flow. Plant Cell Environ 22:559–565

    Article  CAS  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea mays L.) Int Green Nanotechnol 3:180–190

    Article  CAS  Google Scholar 

  • Zhang N, Si HS, Wen G, Du HH, Liu BL, Wang D (2011) Enhanced drought and salinity tolerance in transgenic potato plants with a BADH gene from spinach. Plant Biotechnol Rep 5(1):71–77

    Article  Google Scholar 

  • Zhang M, Gao B, Chen J, Li Y (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17(2):73–80

    Article  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally growth aged seeds of spinach. Biol Trace Elem Res 104:83–91. http://dx.doi.org/10.1385/BTER:104:1:083

Download references

Acknowledgments

The authors would like to thank the team at the Research Station in King Faisal University for their help and assistance during the experiment duration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Alshaal.

Additional information

Responsible editor: Yi-ping Chen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaeedi, A.H., El-Ramady, H., Alshaal, T. et al. Engineered silica nanoparticles alleviate the detrimental effects of Na+ stress on germination and growth of common bean (Phaseolus vulgaris). Environ Sci Pollut Res 24, 21917–21928 (2017). https://doi.org/10.1007/s11356-017-9847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9847-y

Keywords

Navigation