Skip to main content
Log in

Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe2+ and Mn2+ as inducers of ligninolytic enzymes and NO3 as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO3 , 0.73 mM Fe2+, and 1 mM Mn2+, which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm−1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO3 promotes selective lignin degradation in wheat straw by G. lobatum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acevedo F, Pizzul L, Castillo MP, Rubilar L, Lienqueo ME, Tortella G, Diez MC (2011) A practical culture technique for an enhanced production of manganese peroxidase by the Chilean white-rot fungus Anthracophyllum discolor Sp4. Braz Arch Biol Techn 54:1175–1186

    Article  CAS  Google Scholar 

  • Arantes V, Saddler JN (2011) Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates. Biotechnol Biofuels 4:1–16

    Article  Google Scholar 

  • Bisaria R, Madan M, Vasudevan P (1997) Utilization of agro-residues as animal feed through bioconversion. Bioresour Technol 59:5–8

    Article  CAS  Google Scholar 

  • Blanchette RA (1984) Screening wood decayed by white rot fungi for preferential lignin degradation. Appl Environ Microbiol 48:647–653

    CAS  Google Scholar 

  • Bond L, Donaldson L, Hill S, Hitchcock K (2008) Safranin fluorescent staining of wood cell walls. Biotech Histochem 83:161–171

    Article  CAS  Google Scholar 

  • Chandra R, Ewanick S, Hsieh C, Saddler JN (2008) The characterization of pretreated lignocellulosic substrates prior to enzymatic hydrolysis, part 1: a modified Simons’ staining technique. Biotechnol Prog 24:1178–1185

    Article  CAS  Google Scholar 

  • Cianchetta S, Di Maggio B, Burzi PL, Galletti S (2014) Evaluation of selected white-rot fungal isolates for improving the sugar yield from wheat straw. Appl Biochem Biotechnol 173:609–623

    CAS  Google Scholar 

  • Couto SR, Longo MA, Cameselle C, Sanromán A (1998) Influence of some inducers on activity of ligninolytic enzymes from corncob cultures of Phanerochaete chrysosporium in semi-solid-state conditions. Progr Biotechnol 5:703–708

  • Dias AA, Freitas GS, Marques GSM, Sampaio A, Fraga IS, Rodrigues MAM, Evtuguin DV, Bezerra RMF (2010) Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi. Bioresour Technol 101:6045–6050

    Article  CAS  Google Scholar 

  • Fackler K, Schmutzer M, Manoch L, Schwanninger M, Hinterstoisser B, Ters T, Messner K, Gradinger C (2007) Evaluation of the selectivity of white rot isolates using near infrared spectroscopic techniques. Enzym Microb Technol 41:881–887

    Article  CAS  Google Scholar 

  • Gahda AY, Mahmoud MB (2009) Improved production of endoglucanase enzyme by Aspergillus terreus; application of plackett burman design for optimization of process parameters. Biotechnol 8:212–219

    Article  Google Scholar 

  • Gianfreda L, Rao M (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Tech 35:339–354

    Article  CAS  Google Scholar 

  • Gupta R, Mehta G, Pal Y, Kuhad R (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804

    Article  CAS  Google Scholar 

  • Jonathan SG, Adeoyo OR (2011) Effect of environmental and nutritional factors on mycelial biomass yield of ten wild Nigerian mushrooms during cellulase and amylase production. Elect J Environ Agric Food Chem 10:2891–2899

    CAS  Google Scholar 

  • Kannaiyan R, Mahinpey N, Kostenko V, Martinuzzi RJ (2015) Nutrient media optimization for simultaneous enhancement of the laccase and peroxidases production by coculture of Dichomitus squalens and Ceriporiopsis subvermispora. Biotechnol Appl Bioc 62:173–185

    Article  CAS  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  Google Scholar 

  • Kim HM, Lee KH, Kim KH, Lee DS, Nguyen QA, Bae HJ (2014) Efficient function and characterization of GH10 xylanase (Xyl10g) from Gloeophyllum trabeum in lignocellulose degradation. J Biotechnol 172:38–45

    Article  CAS  Google Scholar 

  • Knežević A, Stajic M, Vukojevic J, Milovanovic I (2014) The effect of trace elements on wheat straw degradation by Trametes gibbosa. Int Biodeterior Biodegradation 96:152–156

    Article  Google Scholar 

  • Kuhad RC, Singh A (2007) Lignocellulose biotechnology: future prospects. IK International Publications, New Delhi

    Google Scholar 

  • Lestan D, Lestan M, Lamar RT (1998) Growth and viability of mycelial fragments of white-rot fungi on some hydrogels. J Ind Microbiol Biotechnol 20:244–250

    Article  CAS  Google Scholar 

  • Lin S, Dence CW (1992) The determination of lignin. In: Lin S, Dence C (eds) Methods in lignin chemistry. Springer Series in Wood Science, Springer Berlin Heidelberg, pp 33–61

    Chapter  Google Scholar 

  • Mane V, Patil S, Syed A, Baig M (2007) Bioconversion of low quality lignocellulosic agricultural waste into edible protein by Pleurotussajor-caju (Fr.) singer. J Zhejiang Univ Sci B 8:745–751

    Article  CAS  Google Scholar 

  • Martínez AT, Rencoret J, Nieto L, Jiménez-Barbero J, Gutiérrez A, del Rio JC (2011) Selective lignin and polysaccharide removal in natural fungal decay of wood as evidenced by in situ structural analyses. Environ Microbial 13:96–107

    Article  Google Scholar 

  • Mester T, Field JA (1998) Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J Biol Chem 273:15412–15417

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid. Reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Monheit JE, Cowan DF, Moore DG (1984) Rapid detection of fungi in tissues using calcofluor white and fluorescence microscopy. Arch Pathol Lab Med 108:616–618

    CAS  Google Scholar 

  • Oliva-Taravilla A, Moreno AD, Demuez M, Ibarra D, Tomás-Pejó E, González-Fernández C, Ballesteros M (2015) Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol 175:209–215

    Article  CAS  Google Scholar 

  • Parenti A, Muguerza E, Redin IA, Omarini A, Conde E, Alfaro M, Castanera R, Santoyo F, Ramírez L, Pisabarro AG (2013) Induction of laccase activity in the white-rot fungus Pleurotus ostreatus using water polluted with wheat straw extracts. Bioresour Technol 133:142–149

    Article  CAS  Google Scholar 

  • Rouches E, Herpoël-Gimbert I, Steyer JP, Carrere H (2016) Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renew Sust Energ Rev 59:179–198

    Article  CAS  Google Scholar 

  • Rubilar O, Feijoo G, Diez MC, Lu-Chau T, Moreira MT, Lema JM (2007) Biodegradation of penthachlorophenol (PCP) in soil slurry cultures by Bjerkandera adusta and Anthracopyllum discolor. Ind Eng Chem Res 46:6744–6751

    Article  CAS  Google Scholar 

  • Saha BC, Qureshi N, Kennedy GJ, Cotta MA (2016) Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. Int Biodeterior Biodegradation 109:29–35

    Article  CAS  Google Scholar 

  • Salvachúa D, Prieto A, Lopez-Abelairas M, Lu-Chau T, Martinez AT, Martinez MJ (2011) Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol 102:7500–7506

    Article  Google Scholar 

  • Salvachúa D, Prieto A, Vaquero ME, Martínez ÁT, Martínez MJ (2013) Sugar recoveries from wheat straw following treatments with the fungus Irpex lacteus. Bioresour Technol 131:218–225

    Article  Google Scholar 

  • Sawada T, Nakamura Y, Kobayashi F, Kuwahara M, Watanabe T (1995) Effects of fungal pretreatment and steam explosion pretreatment on enzymatic saccharification of plant biomass. Biotechnol Bioeng 48:719–724

    Article  CAS  Google Scholar 

  • Shrivastava B, Nandal P, Sharma A, Jain KK, Khasa YP, Das TK, Mani V, Kewalramani NJ, Kundu SS, Kuhad RC (2012) Solid state bioconversion of wheat straw into digestible and nutritive ruminant feed by Ganoderma sp. rckk02. Bioresour Technol 107:347–351

    Article  CAS  Google Scholar 

  • Shrivastava B, Thakur S, Pal Y, Gupte A, Kumar A, Kuhad R (2011) White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation 22:823–831

    Article  CAS  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Sun XF, Xu F, Sun RC, Fowler P, Baird MS (2005) Characteristics of degraded cellulose obtained from steam-exploded wheat straw. Carbohydr Res 340:97–106

    Article  CAS  Google Scholar 

  • Thakur S, Shrivastava B, Ingale S, Kuhad R, Gupte A (2012) Degradation and selective ligninolysis of wheat straw and banana stem for an efficient bioethanol production using fungal and chemical pretreatment. 3. Biotech 3:365–372

    Google Scholar 

  • Tien M, Kirk TK (1983) Lignin-degrading enzyme from the hymenomycete Phanerochaete chrysosprium Burd. Sci 221:661–663

    Article  CAS  Google Scholar 

  • Tijani IDR, Jamal P, Alam Z, Mirgham M (2011) Valorization of casava peels by white-rot fungus Panus tigrinus M609RQY. Aust J Basic Applied Sci 5:808–816

    Google Scholar 

  • van Kuijk SJA, Sonnenberg ASM, Baars JJP, Hendriks WH, Cone JW (2016) The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent in vitro rumen degradation. Anim Feed Sci Technol 213:22–28

    Article  Google Scholar 

  • Verbelen JP, Kerstens S (2000) Polarization confocal microscopy and Congo red fluorescence: a simple and rapid method to determine the mean cellulose fibril orientation in plants. J Microsc 198:101–107

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2010) Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzym Microb Technol 47:31–36

    Article  CAS  Google Scholar 

  • Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  CAS  Google Scholar 

  • Wiman M, Dienes D, Hansen M, van der Meulen T, Zacchi G, Lidén G (2012) Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresour Technol 126:208–215

    Article  CAS  Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Meth Enzymol 160:87–112

  • Wu JM, Zhang YZ (2010) Gene expression in secondary metabolism and metabolic switching phase of Phanerochaete chrysosporium. Appl Biochem Biotech 162:1961–1977

    Article  CAS  Google Scholar 

  • Xu F, Yu J, Tesso T, Dowell F, Wang D (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl Energ 104:801–809

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by CONICYT Doctoral scholarship 21120634 and FAPERJ-UFRO FPJ15-0005 projects and, partially, by the CONICYT/FONDAP/15130015 and FONDECYT No. 3130650 projects. Edward Hermosilla is grateful to BQ. Karina Godoy of Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile, by the support provided in CLSM analysis of wheat straw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Cristina Diez.

Additional information

Responsible editor: Yi-ping Chen

Electronic supplementary material

Supplementary A1

(DOCX 383 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermosilla, E., Schalchli, H., Mutis, A. et al. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum . Environ Sci Pollut Res 24, 21984–21996 (2017). https://doi.org/10.1007/s11356-017-9841-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9841-4

Keywords

Navigation