Skip to main content
Log in

Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wetland plants are biological filters that play an important role in maintaining aquatic ecosystem and can take up toxic metals from sediments and water. The present study investigated the seasonal variation in the accumulation potential of heavy metals by Cyperus articulatus in contaminated watercourses. Forty quadrats, distributed equally in 8 sites (six contaminated sites along Ismailia canal and two uncontaminated sites along the River Nile), were selected seasonally for sediment, water, and plant investigations. Autumn was the flourishing season of C. articulatus with the highest shoot density, length, and diameter as well as aboveground biomass, while summer showed the least growth performance. The photosynthetic pigments were markedly reduced under contamination stress. C. articulatus plants accumulated concentrations of most heavy metals, except Pb, in their roots higher than the shoots. The plant tissues accumulated the highest concentrations of Fe, Cd, Ni, and Zn during autumn, while Cu and Mn during spring, and Cr and Co during winter. It was found that Cd, Cu, Ni, Zn, Pb, and Co had seasonal bioaccumulation factor (BF) > 1 with the highest BF for Cd, Ni, and Zn during autumn, Co, Cu, and Pb in winter, spring, and summer, respectively. The translocation factor of most heavy metals, except Pb in spring, was <1 indicating potential phytostabilization of these metals. In conclusion, autumn is an ideal season for harvesting C. articulatus in order to monitor pollution in contaminated wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen SE (1989) Chemical analysis of ecological materials. Blackwell Scientific Publications, London

    Google Scholar 

  • Ayyad MA, Abdel-Razik M, Mahanna A (1983) Climate and vegetation gradient in the Mediterranean desert of Egypt. Pre-report of the Mediterranean bioclimatology symposium, Montepellier (France, 18-20 may 2-14)

  • Balkhair KS, Ashraf MA (2016) Field accumulation risks of heavy metals in a soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J Biol Sci 23(1):S32–S44

    Article  CAS  Google Scholar 

  • Batool R, Hameed M, Ashraf M, Fatima S, Nawaz T, Ahmad MSA (2014) Structural and functional response to metal toxicity in aquatic Cyperus alopecuroides Rottb. Limnology 48:46–56

    Article  CAS  Google Scholar 

  • Bonanno G (2013) Comparative performance of trace element bioaccumulation and biomonitoring in the plant species Typha domingensis, Phragmites australis and Arundo donax. Ecotoxicol Environ Saf 97:124–130

    Article  CAS  Google Scholar 

  • Bonanno G, Borg JA, Di Martino V (2017) Levels of heavy metals in wetland and marine vascular plants and their biomonitoring potential: a comparative assessment. Sci Total Environ 576:796–806

    Article  CAS  Google Scholar 

  • Bose S, Vedamati J, Rai V, Ramanathan AL (2008) Metal uptake and transport by Typha angustata L. grown on metal contaminated waste amended soil: an implication of phytoremediation. Geoderma 145:136–142

    Article  CAS  Google Scholar 

  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. Ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ Pollut 144:967–975

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  Google Scholar 

  • Caselles-osorio A, Vegab H, Lancherosa JC, Casierra-Martíneza HA, Mosquera JE (2017) Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecol Eng 99:479–485

    Article  Google Scholar 

  • Chandrasekaran A, Ravisankar R (2015) Spatial distribution of physico-chemical properties and function of heavy metals in soils of Yelagiri Hills, Tamilnadu by energy dispersive X-ray florescence spectroscopy (EDXRF) with statistical approach. Spectrochim Acta A Mol Biomol Spectrosc 150:586–601

    Article  CAS  Google Scholar 

  • Chen WM, Wu CH, James EK, Chang JS (2008) Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J Hazard Mater 151:364–371

    Article  CAS  Google Scholar 

  • Chiroma TM, Ebewele RO, Hymore FK (2014) Comparative assessment of heavy metal levels in soil, vegetables and urban grey waste water used for irrigation in Yola and Kano. Int Ref J Eng Sci 3(2):01–09

    Google Scholar 

  • Choppala G, Saifullah Bolan N, Bibi S, Iqbal M, Rengel Z, Kunhikrishnan A, Ok YS (2014) Cellular mechanisms in higher plants governing tolerance to cadmium toxicity. Crit Rev Plant Sci 33:374–391

    Article  CAS  Google Scholar 

  • Cui L, Ouyang Y, Chen Y, Zhu X, Zhu WL (2009) Removal of total nitrogen by Cyperus alternifolius from wastewaters in simulated vertical-flow constructed wetlands. Ecol Eng 35:1271–1274

    Article  Google Scholar 

  • D’Souza RJ, Varun M, Masih J, Paul MS (2010) Identification of Calotropis procera L. as a potential phytoaccumulator of heavy metals from contaminated soils in urban north central India. J Hazard Mater 184(1–3):457–464

    Article  Google Scholar 

  • Dan A, Oka M, Fujii Y, Soda S, Ishigaki T, Machimura T, Ike M (2017) Removal of heavy metals from synthetic landfill leachate in lab-scale vertical flow constructed wetlands. Sci Total Environ 584–585:742–750

    Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Dhir B, Srivastava S (2012) Disposal of metal treated Salvinia biomass in soil and its effect on growth and photosynthetic efficiency of wheat. Int J Phytoremediation 14:24–34

    Article  Google Scholar 

  • Duarte B, Couto T, Marques JC, Caçador I (2012) Scirpus maritimus leaf pigment profile and photochemistry during senescence: implications on carbon sequestration. Plant Physiol Biochem 57:238–244

    Article  CAS  Google Scholar 

  • Eid EM, Shaltout KH, Asaeda T (2012) Modeling growth dynamics of Typha domingensis (Pers.) Poir. Ex Steud. In Lake Burullus. Egypt Ecol Model 243:63–72

    Article  Google Scholar 

  • Eid EM, Youssef MSG, Shaltout KH (2016) Population characteristics of giant reed (Arundo donax L.) in cultivated and naturalized habitats. Aquat Bot 129:1–8

    Article  Google Scholar 

  • El-Kady H (2002) Seasonal variation in phytomass and nutrient status of Phragmites australis along the water courses in the Middle Delta region. Taekholmia 20(2):123–138

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes–options and impossibilities. Chem Erde 65:29–42

    Article  CAS  Google Scholar 

  • Farrag HF, Fawzy M (2012) Phytoremediation potentiality of Cyperus articulatus L. Life Sci J 9(4):4032–4040

    Google Scholar 

  • Fawzy MA, Badr NE, El-Khatib A, Abo-El-Kassem A (2012) Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile. Environ Monit Assess 184:1753–1771

    Article  CAS  Google Scholar 

  • Fernandez S, Poschenrieder C, Marcenò C, Gallego JR, Jiménez-Gámez D, Bueno A, Afiet E (2016) Phytoremediation capability of native plant species living on Pb-Zn and hg-as mining wastes in the Cantabrian range, north of Spain. J Geochem Explor 174:10–20

    Article  Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Plant community tolerant to trace elements growing on the degraded soils of São Domingos mine in the south east of Portugal: environmental implications. Environ Int 30:65–72

    Article  CAS  Google Scholar 

  • Galal TM, Shehata HS (2016) Growth and nutrients accumulation potentials of giant reed (Arundo Donax L.) in different habitats in Egypt. Int J Phytoremediation 18(12):1221–1230

    Article  CAS  Google Scholar 

  • Galal TM, Gharib FA, Ghazi SM, Mansour KH (2017) Phytostabilization of heavy metals by the emergent macrophyte Vossia Cuspidata (Roxb.) Griff.: a phytoremediation approach. Int J Phytoremediation. doi:10.1080/15226514.2017.1303816

  • Ghaderian SM, Ravandi AAG (2012) Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area. Iran J Geochem Explor 123:25–32

    Article  CAS  Google Scholar 

  • Gordon-Gray KD, Ward CJ, Edwards TJ (2006) Studies in Cyperaceae in southern Africa 39: Cyperus articulatus L. and Cyperus corymbosus Rottb. South Afr J Bot 72:147–149

    Article  Google Scholar 

  • Guittonny-philippe A, Masotti V, Höhener P, Boudenne J, Viglione J, Laffont-schwob I (2014) Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems : a review to overcome obstacles and suggest potential solutions. Environ Int 64:1–16

    Article  Google Scholar 

  • Gupta AK, Mahamane A, Diop FN, Ben Saad S, Daoud-Bouattour A, Ghrabi Z, Muller S (2015) Cyperus articulatus. In: IUCN 2014. IUCN red list of threatened species. Version 2014.1

  • Hadi F, Hussain F, Hussain M, Sanaullah AA, Ur Rahman S, Ali N (2014) Phytoextraction of Pb and cd; the effect of urea and EDTA on Cannabis sativa growth under metals stress. Int J Agron Agric Res 5(3):30–39

    Google Scholar 

  • Ho YB (1988) Metal levels in three intertidal macroalgae in Hong Kong waters. Aquat Bot 29:367–372

    Article  CAS  Google Scholar 

  • Imran M, Rehim A, Sarwar N, Hussain S (2016) Zinc bioavailability in maize grains in response of phosphorous–zinc interaction. J Plant Nutr Soil Sci 179:60–66

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants. CRC Press, Boca Raton

  • Kassaye YA, Skipperud L, Einset J, Salbu B (2016) Aquatic macrophytes in Ethiopian Rift Valley lakes ; their trace elements concentration and use as pollution indicators. Aquat Bot 134:18–25

    Article  CAS  Google Scholar 

  • Kropfelova L, Vymazal J, Svehla J, Stichova J (2009) Removals of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech-Republic. Environ Pollut 157:1186–1194

    Article  Google Scholar 

  • Küpper H, Leitenmaier B (2013) Cadmium-accumulating plants. In: cadmium: from toxicity to essentiality. Springer, Netherlands, pp 373–393

    Book  Google Scholar 

  • Kyambadde J, Kansiime F, Gumaelius L, Dalhammar G (2004) A comparative study of Cyperus papyrus and Miscanthidium violaceum-based constructed wetlands for wastewater treatment in a tropical climate. Water Res 38(2):475–485

    Article  CAS  Google Scholar 

  • Leguizamo AMO, Gómez WDF, Sarmiento MCG (2017) Native herbaceous plant species with potential use in phytoremediation of heavy metals, spotlight on wetlands: a review. Chemosphere 168:1230–1247

    Article  Google Scholar 

  • Liu JG, Li GH, Shao WC, Xu JK, Wang DK (2010) Variations in uptake and transloction of copper, chromium, and nickle among nineteen wetland plant species. Pedosphere 20:96–103

    Article  CAS  Google Scholar 

  • Lu RK (2000) Methods of inorganic pollutants analysis. In: soil and agro-chemical analysis methods. Agricultural Science and Technology Press, Beijing

    Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Mganga N, Manoko MLK, Rulangaranga ZK (2011) Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanzan J Sci 37

  • Mizoi J, Yamaguchi-Shinozaki K (2013) Molecular approaches to improve rice abiotic stress tolerance. In: Yang Y (ed) Rice protocols. Humana Press, New York, pp 269–283

  • Mohammed A, Babatunde AO (2017) Modeling heavy metals transformation in vertical flow constructed wetlands. Ecol Model 354:62–71

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Ng YS, Chan DJC (2017) Wastewater phytoremediation by Salvinia molesta. J Water Process Eng 15:107–115

    Article  Google Scholar 

  • Norah MM (2014) Impact of copper mining stockpiles on diversity of plants, soils, and Cyperus papyrus of Kahendero swamp, Lake George, Uganda. J Sci 4(4):195–205

    Google Scholar 

  • Obarska-Pempkowiak H, Haustein E, Wojciechowska E (2005) Distribution of heavy metals in vegetation of constructed wetlands in agricultural catchment. In: Vymazal J (ed) Natural and constructed wetlands: nutrients, metals and management. Backhuys Publishers, Leiden, pp 125–134

    Google Scholar 

  • Oladosu IA, Usman LA, Olawore NO, Atata RF (2011) Antibacterial activity of rhizomes essential oils of two types of Cyperus articulatus growing in Nigeria. Adv Biol Res 5(3):179–183

    Google Scholar 

  • Perbangkhem T, Polprasert C (2010) Biomass production of papyrus (Cyperus papyrus) in constructed wetlands treating low-strength domestic wastewater. Bioresour Technol 101(2):833–835

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Redondo-Gómez S, Andrades-Moreno L, Parra R, Mateos-Naranjo E, Sánchez-Lafuente AM (2011) Factors influencing seed germination of Cyperus capitatus, inhabiting the moving sand dunes in southern Europe. J Arid Environ 75:309–312

    Article  Google Scholar 

  • Rezaniaa S, Mat Taibb S, Md Dina MH, Dahalanc FA, Kamyaba H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  Google Scholar 

  • Roy M, McDonald LM (2013) Metal uptake in plants and health risk assessments metal-contaminated smelter soils. Land Degrad Dev 26:785–792

  • Sarwar N, Ishaq W, Farid G, Shaheen MR, Imran M, Geng M, Hussain S (2015) Zinc-cadmium interactions: impact on wheat physiology and mineral acquisition. Ecotoxicol Environ Saf 122:528–536

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaq W, Kamran A, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Serag M (2003) Ecology and biomass production of Cyperus papyrus L. on the Nile bank at Damietta, Egypt. J Medit Ecol 4(3–4):15–24

  • Shaltout KH, Galal TM, El-Komy TM (2010) Evaluation of the nutrient status of some hydrophytes in the water courses of Nile Delta, Egypt. Ecol Medit 36(1):77–87

    Google Scholar 

  • Shaltout KH, Galal TM, El-Komy TM (2013) Biomass, nutrients and nutritive value of Persicaria salicifolia Willd. In the water courses of Nile Delta, Egypt. Rend Fis Acc Linc 25:167–179

    Article  Google Scholar 

  • Shen F, Liao R, Ali A, Mahar A, Guo D, Li R, Sun X, Awasthi MK, Wang Q, Zhang Z (2017) Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol Environ Saf 139:254–262

    Article  CAS  Google Scholar 

  • Soda S, Hamada T, Yamaoka Y, Ike M, Nakazato H, Saeki Y, Kasamatsu T, Sakurai Y (2012) Cosntructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol Eng 39:63–70

    Article  Google Scholar 

  • SPSS (2012) IBM SPSS statistics version 21.0. Copyright of IBM and other(s) 1989-2012, USA

  • Theophile F, Sako IB, Martin L, Fabrice MT, Akoa A (2011) Potential of Cyperus papyrus in yard-scale horizontal flow constructed wetlands for wastewater treatment in Cameroon. Univ J Environ Res Technol 1(2):160–168

    Google Scholar 

  • Vardanyan LG, Ingole B (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208–218

    Article  CAS  Google Scholar 

  • Vymazal J (2013) Emergent plants used in free water surface constructed wetlands : a review. Ecol Eng 61:582–592

    Article  Google Scholar 

  • Wang G, Su MY, Chen YH, Lin FF, Luo D, Gao SF (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ Pollut 144:127–135

    Article  CAS  Google Scholar 

  • Wei M, Qin YW, Zheng BH, Zhang L (2008) Heavy metal pollution in tianjin Bohai Bay, China. J Environ Sci 20:814–819

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Weis JS, Glover T, Weis P (2004) Interactions of metals affect their distribution in tissues of Phragmites australis. Environ Pollut 131:409–415

    Article  CAS  Google Scholar 

  • Wojciechowska E, Waara S (2011) Distribution and removal efficiency of heavy metals in two constructed wetlands treating landfill leachate. Water Sci Technol 64:1597–1606

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants : an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76(2):167–179

    Article  CAS  Google Scholar 

  • Yadav BK, Siebel MA, van Bruggen JJA (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Soil Air Water 39(5):467–474

    Article  CAS  Google Scholar 

  • Yan P, Xia JS, Chena YP, Liu ZP, Guoa JS, Shen Y, Zhangc CC, Wang J (2017) Thermodynamics of binding interactions between extracellular polymeric substances and heavy metals by isothermal titration microcalorimetry. Bioresour Technol 232:354–363

    Article  CAS  Google Scholar 

  • Zhang JT, Xi Y, Li J (2006) The relationships between environment and plant communities in the middle part of Taihang Mountain range, North China. Commun Ecol 7:155–163

    Article  Google Scholar 

  • Zhang ZH, Rengel Z, Meney K (2010) Cadmium accumulation and translocation in four emergent wetland species. Water Air Soil Pollut 212:239–249

    Article  CAS  Google Scholar 

  • Zhang DQ, Jinadasa KBSN, Gersberg RM, Liu Y, Ng WJ, Tan SK (2014) Application of constructed wetlands for wastewater treatment in developing countries: a review of recent developments (2000–2013). J Environ Manag 141:116–131

    Article  CAS  Google Scholar 

  • Zhao FJ, Lombi E, McGrath SP (2003) Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil 249(1):37–43

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek M. Galal.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galal, T.M., Gharib, F.A., Ghazi, S.M. et al. Metal uptake capability of Cyperus articulatus L. and its role in mitigating heavy metals from contaminated wetlands. Environ Sci Pollut Res 24, 21636–21648 (2017). https://doi.org/10.1007/s11356-017-9793-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9793-8

Keywords

Navigation