Environmental Science and Pollution Research

, Volume 26, Issue 4, pp 3174–3183 | Cite as

Synthesis of rigid polyurethane foams from phosphorylated biopolyols

  • Juan Carlos de Haro
  • Daniel López-Pedrajas
  • Ángel Pérez
  • Juan Francisco Rodríguez
  • Manuel CarmonaEmail author
Contaminated sites, waste management and green chemistry: New challenges from monitoring to remediation


Renewable resources are playing a key role on the synthesis of biodegradable polyols. Moreover, the incorporation of covalently linked additives is increasing in importance in the polyurethane (PU) market. In this work, previously epoxidized grape seed oil and methyl oleate were transformed into phosphorylated biopolyols through an acid-catalyzed ring-opening hydrolysis in the presence of H3PO4. The formation of phosphate polyesters was confirmed by FT-IR and 31P-NMR. However, the synthesis of a high-quality PU rigid foam was not possible using exclusively these polyols attending to their low hydroxyl value. In that way, different rigid PU foams were prepared from the phosphorylated biopolyols and the commercial polyol Alcupol R4520. It was observed that phosphorylated biopolyols can be incorporated up to a 57 wt.% in the PU synthesis without significant structural changes with respect to the commercial foam. Finally, thermogravimetric and EDAX analyses revealed an improvement of thermal stability by the formation of a protective phosphorocarbonaceous char layer.


Grape seed oil Oleic acid Epoxidation Biopolyol Phosphorylated polyol Flame retardant Polyurethane foam Char 



Authors gratefully acknowledge the fellowship for PhD studies (FPU014/00009) from the Spanish Ministry of Education, Culture and Sport and the financial support from the University of Castilla-La Mancha (Introduction to Research activities for Master students, grant BIN1622).


  1. Avar G, Meier-Westhues U, Casselmann H, Achten D (2012) Polyurethanes. Polymer science: a comprehensive reference, 10 volume set 10:411–441 doi: 10.1016/B978-0-444-53349-4.00275-2
  2. Bahattab MA, Donate-Robles J, García-Pacios V, Martín-Martínez JM (2011) Characterization of polyurethane adhesives containing nanosilicas of different particle size. Int J Adhes Adhes 31:97–103. doi: 10.1016/j.ijadhadh.2010.11.001 CrossRefGoogle Scholar
  3. Biswas A, Adhvaryu A, Gordon SH, Erhan SZ, Willett JL (2005) Synthesis of diethylamine-functionalized soybean oil. J Agric Food Chem 53:9485–9490. doi: 10.1021/jf050731o CrossRefGoogle Scholar
  4. Chattopadhyay DK, Raju KVSN (2007) Structural engineering of polyurethane coatings for high performance applications. Prog Polym Sci 32:352–418. doi: 10.1016/j.progpolymsci.2006.05.003 CrossRefGoogle Scholar
  5. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133. doi: 10.1016/j.progpolymsci.2009.06.002 CrossRefGoogle Scholar
  6. Chokwe TB, Okonkwo JO, Sibali LL, Ncube EJ (2015) Alkylphenol ethoxylates and brominated flame retardants in water, fish (carp) and sediment samples from the Vaal River, South Africa. Environ Sci Pollut Res 22:11922–11929. doi: 10.1007/s11356-015-4430-x CrossRefGoogle Scholar
  7. Da Porto C, Porretto E, Decorti D (2013) Comparison of ultrasound-assisted extraction with conventional extraction methods of oil and polyphenols from grape (Vitis Vinifera L.) seeds. Ultrason Sonochem 20:1076–1080. doi: 10.1016/j.ultsonch.2012.12.002 CrossRefGoogle Scholar
  8. de Haro JC, Izarra I, Rodríguez JF, Pérez Á, Carmona M (2016a) Modelling the epoxidation reaction of grape seed oil by peracetic acid. J Clean Prod 138:70–76. doi: 10.1016/j.jclepro.2016.05.015 CrossRefGoogle Scholar
  9. de Haro JC, Rodríguez JF, Pérez Á, Carmona M (2016b) Incorporation of azide groups into bio-polyols. J Clean Prod 138:77–82. doi: 10.1016/j.jclepro.2016.05.012 CrossRefGoogle Scholar
  10. Dinda S, Patwardhan AV, Goud VV, Pradhan NC (2008) Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresour Technol 99:3737–3744. doi: 10.1016/j.biortech.2007.07.015 CrossRefGoogle Scholar
  11. Findley TW, Swern D, Scanlan JT (1945) Epoxidation of unsaturated fatty materials with peracetic acid in glacial acetic acid solution. J Am Chem Soc 67:412–414. doi: 10.1021/ja01219a018 CrossRefGoogle Scholar
  12. Fiori L, Valbusa M, Lorenzi D, Fambri L (2012) Modeling of the devolatilization kinetics during pyrolysis of grape residues. Bioresour Technol 103:389–397. doi: 10.1016/j.biortech.2011.09.113 CrossRefGoogle Scholar
  13. Fridrihsone A, Stirna U, Lazdiņa B, Misane M, Vilsone D (2013) Characterization of polyurethane networks structure and properties based on rapeseed oil derived polyol. Eur Polym J 49:1204–1214. doi: 10.1016/j.eurpolymj.2013.03.012 CrossRefGoogle Scholar
  14. Goto A, Yamashita K, Nonomura C, Yamaguchi K (2004) Modeling of cell structure in polyurethane foam. J Cell Plast 40:481–488. doi: 10.1177/0021955X04048422 CrossRefGoogle Scholar
  15. Goud VV, Patwardhan AV, Pradhan NC (2006) Studies on the epoxidation of mahua oil (Madhumica indica) by hydrogen peroxide. Bioresour Technol 97:1365–1371. doi: 10.1016/j.biortech.2005.07.004 CrossRefGoogle Scholar
  16. Grishchuk S, Karger-Kocsis J (2011) Hybrid thermosets from vinyl ester resin and acrylated epoxidized soybean oil (AESO). Express Polym Lett 5:2–11. doi: 10.3144/expresspolymlett.2011.2 CrossRefGoogle Scholar
  17. Guo A, Cho Y, Petrović ZS (2000) Structure and properties of halogenated and nonhalogenated soy-based polyols. J Polym Sci A Polym Chem 38:3900–3910. doi: 10.1002/1099-0518(20001101)38:21<3900::AID-POLA70>3.0.CO;2-E CrossRefGoogle Scholar
  18. Guo Y, Hardesty JH, Mannari VM, Massingill JL Jr (2007) Hydrolysis of epoxidized soybean oil in the presence of phosphoric acid. J Am Oil Chem Soc 84:929–935. doi: 10.1007/s11746-007-1126-5 CrossRefGoogle Scholar
  19. Hou C et al (2014) Mechanical response of hard bio-based PU foams under cyclic quasi-static compressive loading conditions. Int J Fatigue 59:76–89. doi: 10.1016/j.ijfatigue.2013.09.012 CrossRefGoogle Scholar
  20. Islam MR, Beg MDH, Jamari SS (2014) Development of vegetable-oil-based polymers. J Appl Polym Sci 131:9016–9028. doi: 10.1002/app.40787 CrossRefGoogle Scholar
  21. Ji D, Fang Z, He W, Zhang K, Luo Z, Wang T, Guo K (2015) Synthesis of soy-polyols using a continuous microflow system and preparation of soy-based polyurethane rigid foams. ACS Sustain Chem Eng 3:1197–1204. doi: 10.1021/acssuschemeng.5b00170 CrossRefGoogle Scholar
  22. Kim JW et al (2013) Organophosphorus flame retardants in house dust from the Philippines: occurrence and assessment of human exposure. Environ Sci Pollut Res 20:812–822. doi: 10.1007/s11356-012-1237-x CrossRefGoogle Scholar
  23. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364. doi: 10.1177/0734904106068426 CrossRefGoogle Scholar
  24. Liu H, Xu K, Cai H, Su J, Liu X, Fu Z, Chen M (2012a) Thermal properties and flame retardancy of novel epoxy based on phosphorus-modified Schiff-base. Polym Adv Technol 23:114–121. doi: 10.1002/pat.1832 CrossRefGoogle Scholar
  25. Liu XQ, Huang W, Jiang YH, Zhu J, Zhang CZ (2012b) Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polym Lett 6:293–298. doi: 10.3144/expresspolymlett.2012.32 CrossRefGoogle Scholar
  26. Lu H, Sun S, Bi Y, Yang G, Ma R, Yang H (2010) Enzymatic epoxidation of soybean oil methyl esters in the presence of free fatty acids. Eur J Lipid Sci Technol 112:1101–1105. doi: 10.1002/ejlt.201000041 CrossRefGoogle Scholar
  27. Maiti S, Banerjee S, Palit SK (1993) Phosphorus-containing polymers. Prog Polym Sci 18:227–261. doi: 10.1016/0079-6700(93)90026-9 CrossRefGoogle Scholar
  28. Matthäus B (2008) Virgin grape seed oil: is it really a nutritional highlight? Eur J Lipid Sci Technol 110:645–650. doi: 10.1002/ejlt.200700276 CrossRefGoogle Scholar
  29. Mequanint K, Sanderson R, Pasch H (2002) Thermogravimetric study of phosphated polyurethane ionomers. Polym Degrad Stab 77:121–128. doi: 10.1016/S0141-3910(02)00088-5 CrossRefGoogle Scholar
  30. Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692–1704. doi: 10.1016/j.actbio.2013.08.040 CrossRefGoogle Scholar
  31. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II. Foams J Am Oil Chem Soc 84:65–72. doi: 10.1007/s11746-006-1008-2 CrossRefGoogle Scholar
  32. Ng TB, Bekhit AEDA, Fang EF, Wong JH (2015) Grape seed (Vitis vinifera) oils. In: Essential Oils in Food Preservation, Flavor and Safety. pp 455–462. doi: 10.1016/B978-0-12-416641-7.00051-1
  33. Pereira LC, de Souza AO, Bernardes MFF, Pazin M, Tasso MJ, Pereira PH, Dorta DJ (2015) A perspective on the potential risks of emerging contaminants to human and environmental health. Environ Sci Pollut Res 22:13800–13823. doi: 10.1007/s11356-015-4896-6 CrossRefGoogle Scholar
  34. Petrovic ZS (2008) Polyurethanes from vegetable oils. Polym Rev 48:109–155. doi: 10.1080/15583720701834224 CrossRefGoogle Scholar
  35. Petrović ZS, Ferguson J (1991) Polyurethane elastomers. Prog Polym Sci 16:695–836. doi: 10.1016/0079-6700(91)90011-9 CrossRefGoogle Scholar
  36. Petrović ZS, Guo A, Javni I, Cvetković I, Hong DP (2008) Polyurethane networks from polyols obtained by hydroformylation of soybean oil. Polym Int 57:275–281. doi: 10.1002/pi.2340 CrossRefGoogle Scholar
  37. Petrović ZS, Zhang W, Javni I (2005) Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Biomacromolecules 6:713–719. doi: 10.1021/bm049451s CrossRefGoogle Scholar
  38. Pretsch E, Bühlmann P, Affolter C (2000) Structure determination of organic compounds. Tables of Spectral Data. Chemical Laboratory Practice. Springer, Berlin. doi: 10.1007/978-3-662-04201-4 Google Scholar
  39. Price D et al (2007) Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems. Polym Degrad Stab 92:1101–1114. doi: 10.1016/j.polymdegradstab.2007.02.003 CrossRefGoogle Scholar
  40. Samuelsson J, Jonsson M, Brinck T, Johtansson M (2004) Thiol-ene coupling reaction of fatty acid monomers. J Polym Sci A Polym Chem 42:6346–6352. doi: 10.1002/pola.20468 CrossRefGoogle Scholar
  41. Sharma BK, Liu Z, Adhvaryu A, Erhan SZ (2008) One-pot synthesis of chemically modified vegetable oils. J Agric Food Chem 56:3049–3056. doi: 10.1021/jf073070z CrossRefGoogle Scholar
  42. Shinagawa FB, de Santana FC, Torres LRO, Mancini-Filho J (2015) Grape seed oil: a potential functional food? Food Sci Technol 35:399–406. doi: 10.1590/1678-457X.6826 CrossRefGoogle Scholar
  43. Simón D, Borreguero AM, De Lucas A, Rodríguez JF (2015) Glycolysis of viscoelastic flexible polyurethane foam wastes. Polym Degrad Stab 116:23–35. doi: 10.1016/j.polymdegradstab.2015.03.008 CrossRefGoogle Scholar
  44. Sovová H, Kučera J, Jež J (1994) Rate of the vegetable oil extraction with supercritical CO2-II. Ext Grape Oil Chem Eng Sci 49:415–420. doi: 10.1016/0009-2509(94)87013-6 CrossRefGoogle Scholar
  45. Tavares LB, Boas CV, Schleder GR, Nacas AM, Rosa DS, Santos DJ (2016) Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym Lett 10:927–940. doi: 10.3144/expresspolymlett.2016.86 CrossRefGoogle Scholar
  46. Troev K, Tsevi R, Bourova T, Kobayashi S, Uayama H, Roundhill DM (1996) Synthesis of phosphorus-containing polyurethanes without use of isocyanates. J Polym Sci A Polym Chem 34:621–631. doi: 10.1002/(SICI)1099-0518(199603)34:4<621::AID-POLA8>3.0.CO;2-T CrossRefGoogle Scholar
  47. van der Veen I, de Boer J (2012) Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88:1119–1153. doi: 10.1016/j.chemosphere.2012.03.067 CrossRefGoogle Scholar
  48. Velencoso MM, Ramos MJ, Serrano A, de Lucas A, Rodríguez JF (2015) Fire retardant functionalized polyol by phosphonate monomer insertion. Polym Int 64:1706–1714. doi: 10.1002/pi.4970 CrossRefGoogle Scholar
  49. Venkitasamy C, Teh HE, Atungulu GG, McHugh TH, Pan Z (2014) Optimization of mechanical extraction conditions for producing grape seed oil. Trans ASABE 57:1699–1705. doi: 10.13031/trans.57.10570 Google Scholar
  50. Vroman I, Tighzert L (2009) Biodegradable polymers. Materials 2:307–344. doi: 10.3390/ma2020307 CrossRefGoogle Scholar
  51. Wu S, Soucek MD (1998) Oligomerization mechanism of cyclohexene oxide. Polymer 39:3583–3586. doi: 10.1016/S0032-3861(97)10158-6 CrossRefGoogle Scholar
  52. Zia KM, Bhatti HN, Ahmad Bhatti I (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67:675–692. doi: 10.1016/j.reactfunctpolym.2007.05.004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Chemical Engineering, Institute of Chemical and Environmental TechnologyUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations