Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects

  • Giovanni Benelli
  • Filippo Maggi
  • Roman Pavela
  • Kadarkarai Murugan
  • Marimuthu Govindarajan
  • Baskaralingam Vaseeharan
  • Riccardo Petrelli
  • Loredana Cappellacci
  • Suresh Kumar
  • Anders Hofer
  • Mohammad Reza Youssefi
  • Abdullah A. Alarfaj
  • Jiang-Shiou Hwang
  • Akon Higuchi
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.

Keywords

Arbovirus Biosafety Dengue Genotoxicity Japanese encephalitis Malaria Nanosynthesis West Nile virus Zika virus 

Notes

Acknowledgements

Giovanni Benelli is grateful to the One Health Initiative (www.onehealthinitiative.com) for hosting him as supporter. Giovanni Benelli would like to thank Laura Kahn and Bruce Kaplan for their helpful suggestions on the topic of this review.

Compliance with ethical standards

Funding

The Authors extend our appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding through ISPP no. 0062. J.-S. Hwang thanks the Ministry of Science and Technology of Taiwan (grant no. NSC98-2621-B-019-001-MY3, NSC101-2621-B-019-002, and NSC102-2923-B-019-001-MY3) for the financial support. R. Pavela would like to thank the Technology Agency of the CR (Project no. TA04020103). A. Higuchi is grateful to the National Science Council of Taiwan under Grant no. MOST-104-2221-E-008-107-MY3 and MOST-105-2119-M-008-006, as well as to a Grant-in-Aid for Scientific Research (15K06591) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. F. Maggi, R. Petrelli, and L. Cappellacci would like to thank University of Camerino (FAR 2014/15, FPI000044) for the financial support. A. Hofer thanks the Swedish Research Council (2012–1932) and the Kempe Foundation. Lastly, we acknowledge the International High Cited Research Group (IHCRG no. 14-104), Deanship of Scientific Research, King Saud University, Riyadh, Kingdom of Saudi Arabia. Funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of interest

The authors declare no competing interests.

References

  1. Abdel-Ghaffar F, Al-Quraishy S, Mehlhorn H (2015) Length of tick repellency depends on formulation of the repellent compound (icaridin = Saltidin®): tests on Ixodes persulcatus and Ixodes ricinus placed on hands and clothes. Parasitol Res 114:3041–3045CrossRefGoogle Scholar
  2. Al-Fatimi M, Wurster M, Schroder G, Lindequist U (2007) Antioxidant, antimicrobial and cytotoxic activities of selected medicinal plants from Yemen. J Ethnopharmacol 111:657–666CrossRefGoogle Scholar
  3. AlQahtani FS, AlShebly MM, Govindarajan M, Senthilmurugan S, Vijayan P, Benelli G (2017) Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors. J Asia Pac Entomol 20:157–164CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefGoogle Scholar
  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefGoogle Scholar
  6. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256CrossRefGoogle Scholar
  7. Anbu P, Murugan K, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Udaiyan Suresh U, Alarfaj AA, Munusamy MA, Higuchi A, Hwang JS, Kumar S, Nicoletti M, Benelli G (2016) Green-synthesised nanoparticles from Melia azedarach seeds and the cyclopoid crustacean Cyclops vernalis: an eco-friendly route to control the malaria vector Anopheles stephensi? Nat Prod Res 30:2077–2084CrossRefGoogle Scholar
  8. Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N (2012) Neem oil (Azadirachta indica) nanoemulsion—a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 68:158–163CrossRefGoogle Scholar
  9. Ashokan AP, Paulpandi M, Dinesh D, Murugan K, Vadivalagan C, Benelli G (2017) Toxicity on dengue mosquito vectors through Myristica frangrans-synthesized zinc oxide nanorods, and their cytotoxic effects on liver cancer cells (HepG2). J Clust Sci 28:205–226CrossRefGoogle Scholar
  10. Azarudeen RMST, Govindarajan M, Amsath A, Kadaikunnan S, Alharbi NS, Vijayan P, Muthukumaran U, Benelli G (2016) Size-controlled fabrication of silver nanoparticles using the Hedyotis puberula leaf extract: toxicity on mosquito vectors and impact on biological control agents. RSC Adv 6:96573–96583CrossRefGoogle Scholar
  11. Azarudeen RMST, Govindarajan M, AlShebly MM, AlQahtani FS, Amsath A, Benelli G (2017b) One pot green synthesis of colloidal silver nanocrystals using the Ventilago maderaspatana leaf extract: acute toxicity on malaria, Zika virus and filariasis mosquito vectors. J Clust Sci 28:369–392Google Scholar
  12. Azarudeen RMST, Govindarajan M, Amsath A, Muthukumaran U, Benelli G (2017a) Single-step biofabrication of silver nanocristals using Naregamia alata: a cost effective and eco-friendly control tool in the fight against malaria, Zika virus and St Louis encephalitis mosquito vectors. J Clust Sci 28:179–203Google Scholar
  13. Banumathi B, Malaikozhundan B, Vaseeharan B (2016) Invitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus. Vet Parasitol 216:93–100CrossRefGoogle Scholar
  14. Banumathi B, Vaseeharan B, Ramachandran I, Marimuthu Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017a) Toxicity of herbal extracts used in ethno-veterinary medicine and green encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitol Res 116:1637–1651CrossRefGoogle Scholar
  15. Banumathi B, Vaseeharan B, Suganya P, Citarasu T, Govindarajan M, Alharbi NS, Kadaikunnan S, Khaled JM, Benelli G (2017b) Toxicity of Camellia sinensis-fabricated silver nanoparticles on invertebrate and vertebrate organisms: morphological abnormalities and DNA damages. J Clust Sci. doi: 10.1007/s10876-017-1201-5
  16. Barik TK, Kamaraju R, Gowswami A (2012) Silica nanoparticle: a potential new insecticide for mosquito vector control. Parasitol Res 111:1075–1083CrossRefGoogle Scholar
  17. Becker N et al. (2012) Exotic mosquitoes conquer the world. In: Arthropods as vectors of emerging diseases. In: Mehlhorn H (ed). Springer Berlin Heidelberg, Germany, pp. 31–60Google Scholar
  18. Becker N, Geier M, Balczun C, Bradersen U, Huber K, Kiel E, Krüger A, Lühken R, Orendt C, Plenge-Bönig A, Rose Günter A, Tannich SE (2013) Repeated introduction of Aedes albopictus into Germany, July to October 2012. Parasitol Res 112:1787–1790CrossRefGoogle Scholar
  19. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Bor Zoon Dis 7:76–85CrossRefGoogle Scholar
  20. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  21. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  22. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  23. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  24. Benelli G, Beier JC (2017) Current vector control challenges in the fight against malaria. Acta Trop 174:91-96Google Scholar
  25. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based "lure and kill" approach? J Clust Sci 28:287–308CrossRefGoogle Scholar
  26. Benelli G, Lukehart CM (2017) Special issue: applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28:1–2CrossRefGoogle Scholar
  27. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  28. Benelli G, Jeffries CL, Walker T (2016a) Biological control of mosquito vectors: past, present, and future. Insects 7(4):52CrossRefGoogle Scholar
  29. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016b) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137CrossRefGoogle Scholar
  30. Benelli G, Pavela R, Canale A, Mehlhorn H (2016c) Tick repellents and acaricides of botanical origin: a green roadmap to control tick-borne diseases? Parasitol Res 115:2545–2560Google Scholar
  31. Benelli G, Kadaikunnan S, Alharbi NS, Govindarajan M (2017a) Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents. Environ Sci Poll Res. doi: 10.1007/s11356-017-8482-y
  32. Benelli G, Pavela R, Canale A, Cianfaglione K, Ciaschetti G, Conti F, Nicoletti M, Senthil-Nathan S, Mehlhorn H, Maggi F (2017b) Acute larvicidal toxicity of five essential oils (Pinus nigra, Hyssopus officinalis, Satureja montana, Aloysia citrodora and Pelargonium graveolens) against the filariasis vector Culex quinquefasciatus: synergistic and antagonistic effects. Parasitol Int 66(2):166-171Google Scholar
  33. Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017c) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus say. Ind Crop Prod 96:186–195CrossRefGoogle Scholar
  34. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017d) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci 28:3–10CrossRefGoogle Scholar
  35. Benelli G, Romano D (2017) Mosquito vectors of Zika virus. Entomol Gen. Doi: 10.1127/entomologia/2017/0496
  36. Bhandary MJ, Chandrashekar KR, Kaveriappa KM (1995) Medical ethnobotany of the Siddis of Uttara Kannada district, Karnataka, India. J Ethnopharmacol 47:149–158CrossRefGoogle Scholar
  37. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL et al (2013) The global distribution and burden of dengue. Nature 496:504–507CrossRefGoogle Scholar
  38. Blanco E, Macía MJ, Morales R (1999) Medicinal and veterinary plants of El Caurel (Galicia, northwest Spain). J Ethnopharmacol 65:113–124CrossRefGoogle Scholar
  39. Bonizzoni M, Gasperi G, Chen X, James A (2013) The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29:460–468CrossRefGoogle Scholar
  40. Botha CJ, Penrith M-L (2008) Poisonous plants of veterinary and human importance in southern Africa. J Ethnopharmacol 119:549–558CrossRefGoogle Scholar
  41. Bourtzis K, Lees RS, Hendrichs J, Marc JB, Vreysen MJB (2016) More than one rabbit out of the hat: radiation, transgenic and symbiont-based approaches for sustainable management of mosquito and tsetse fly populations. Acta Trop 157:115-130Google Scholar
  42. Bouvard V, Baan RA, Grosse Y, Lauby-Secretan B, Ghissassi FE, Benbrahim-Talias L et al (2012) Carcinogernity of malaria and of some polyomaviruses. Lancet Oncol 13:339–340CrossRefGoogle Scholar
  43. Bouyer J, Lefrançois T (2014) Boosting the sterile insect technique to control mosquitoes. Trends Parasitol 30:271–273CrossRefGoogle Scholar
  44. Breman J (2001) The ears of the hippopotamus: manifestations, determinants, and estimates of the malaria burden. Am J Trop Med Hyg 64:1–11CrossRefGoogle Scholar
  45. Callaway E, Cyranoski D (2015) Anti-parasite drugs sweep Nobel prize in medicine 2015. Nature 526(7572):174–175CrossRefGoogle Scholar
  46. Cano JH, Volpato G (2004) Herbal mixtures in the traditional medicine of Eastern Cuba. J Ethnopharmacol 90:293–316CrossRefGoogle Scholar
  47. Carlton JM, Escalanta AA, Neatsey D, Volkmann SK (2008) Comparative evolutionary genomics of human malaria parasites. Trends Parasitol 24:545–550CrossRefGoogle Scholar
  48. Chadee DD, Williams SA, Ottesen EA (2002) Xenomonitoring of Culex quinquefasciatus mosquitoes as a guide for detecting the presence or absence of lymphatic filariasis: a preliminary protocol for mosquito sampling. Ann Trop Med Parasitol 96:47–53CrossRefGoogle Scholar
  49. Chandramohan B, Murugan K, Panneerselvam C, Madhiyazhagan P, Chandirasekar R, Dinesh D, Mahesh Kumar P, Kovendan K, Suresh U, Subramaniam J, Rajaganesh R, Aziz AT, Syuhei B, Saleh Alsalhi M, Devanesan S, Nicoletti M, Wei H, Benelli G (2016) Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: genotoxicity and impact on predation efficiency of mosquito natural enemies. Parasitol Res 115:1015–1025CrossRefGoogle Scholar
  50. Chung SK, Seo JY, Lim JH, Park HH, Yea MJ, Park HJ (2013) Microencapsulation of essential oil for insect repellent in food packaging system. J Food Sci 78:709–714CrossRefGoogle Scholar
  51. Cohen J, Benns S, Vekemans J, Leach A, Schnermann L (2011) Development of the RTS, S/AS vaccine candidate from concept to phase III. In: Mehlhorn H (ed) (2011) Progress in parasitology. Parasitol Res Mon 2:121–134Google Scholar
  52. Coker RJ, Hunter BM, Rudge JW, Liverani M, Hanvoravongchai P (2011) Emerging infectious diseases in southeast Asia: regional challenges to control. The Lancet 377(9765):599–609Google Scholar
  53. Dantas-Torres F, Chomel BB, Otranto D (2012) Ticks and tick-borne diseases: a One Health perspective. Trends Parasitol 28(10):437–446CrossRefGoogle Scholar
  54. Day MJ (2011) One health: the importance of companion animal vector-borne diseases. Parasit Vectors 4(1):49CrossRefGoogle Scholar
  55. de Almeida Costa CAR, Kohn DO, de Lima VM, Gargano AC, Flório JC, Costa M (2011) The GABAergic system contributes to the anxiolytic-like effect of essential oil from Cymbopogon citratus (lemongrass). J Ethnopharmacol 137:828–836CrossRefGoogle Scholar
  56. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  57. Efferth T, Sauerbrey A, Olbrich A, Gebhart E, Rauch P, Weber HO, Hengstler JG, Halatsch M-E, Volm M, Tew KD, Ross DD, Funk JO (2003) Molecular modes of action of artesunate in tumor cell lines. Mol Pharmacol 64:382–394CrossRefGoogle Scholar
  58. Esha RT, Chowdhury MR, Adhikary S, Haque KMA, Acharjee M, Nurunnabi M, Khatun Z, Lee Y-K, Rahmatullah M (2012) Medicinal plants used by tribal medicinal practitioners of three clans of the Chakma tribe residing in Rangamati district, Bangladesh. Am-Eurasian J Sustain Agric 6:74–84Google Scholar
  59. European Centre for Disease Prevention and Control (2015) Microcephaly in Brazil potentially linked to the Zika virus epidemic: ECDC assesses the risk. Solna, Sweden: European Centre for Disease Prevention and Control, November 25, (http://ecdc.europa.eu/en/press/news/_layouts/forms/News_DispForm.aspx?ID=1329List=8db7286c-fe2d-476c-9133-18ff4cb1b568Source=http%3A%2F%2Fecdc.europa.eu%2Fen%2FPages%2Fhome.aspx)
  60. Fauci AS, Morens DM (2016) Zika virus in the Americas—yet another arbovirus threat. N Engl J Med. doi: 10.1056/NEJMp1600297
  61. Foldbjerg R, Jiang X, Miclăus T, Chunying C, Autrup H, Beer C (2015) Silver nanoparticles—wolves in sheep’s clothing? Toxicol Res 4:563–575CrossRefGoogle Scholar
  62. Franco AO, Gomes MGM, Rowland M, Coleman PG, Davies CR (2014) Controlling malaria using livestock-based interventions: a One Health approach. PLoS One 9(7):e101699CrossRefGoogle Scholar
  63. Fu LM, Lin JY, Yang RJ (2003) Analysis of electroosmotic flow with step change in zeta potential. J Colloid Interface Sci 258:266–275CrossRefGoogle Scholar
  64. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, HobokenCrossRefGoogle Scholar
  65. Govindarajan M, Benelli G (2016a) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115:925–935CrossRefGoogle Scholar
  66. Govindarajan M, Benelli G (2016b) One-pot fabrication of silver nanocrystals using Ormocarpum cochinchinense: biophysical characterization of a potent mosquitocidal and biotoxicity on non-target mosquito predators. J Asia Pac Entomol 19:377–385CrossRefGoogle Scholar
  67. Govindarajan M, Benelli G (2016c) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029Google Scholar
  68. Govindarajan M, Benelli G (2017) A facile one-pot synthesis of eco-friendly nanoparticles using Carissa carandas: ovicidal and larvicidal potential on malaria, dengue and filariasis mosquito vectors. J Clust Sci 28:15–36CrossRefGoogle Scholar
  69. Govindarajan M, Hoti SL, Benelli G (2016d) Facile fabrication of eco-friendly nano-mosquitocides: biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzym Microb Technol 95:155–163Google Scholar
  70. Govindarajan M, Hoti SL, Rajeswary M, Benelli G (2016c) One-step synthesis of poly-dispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol Res 115:2685–2695Google Scholar
  71. Govindarajan M, Khater HF, Panneerselvam C, Benelli G (2016e) One-pot biosynthesis of silver nanoparticles using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101Google Scholar
  72. Govindarajan M, Nicoletti M, Benelli G (2016a) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761Google Scholar
  73. Govindarajan M, Rajeswary M, Hoti SL, Murugan K, Kovendan K, Arivoli S, Benelli G (2016b) Clerodendrum chinense–mediated biofabrication of silver nanoparticles: mosquitocidal potential and acute toxicity against non-target aquatic organisms. J Asia Pac Entomol 19:51–58Google Scholar
  74. Govindarajan M, Rajeswary M, Veerakumar K, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016f) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B 161:482–489CrossRefGoogle Scholar
  75. Govindarajan M, Vijayan P, Kadaikunnan S, Alharbi NS, Benelli G (2016g) One-pot biogenic fabrication of silver nanocrystals using Quisqualis indica: effectiveness on malaria and Zika virus mosquito vectors, and impact on non-target aquatic organisms. J Photochem Photobiol B 162:646–655CrossRefGoogle Scholar
  76. Govindarajan M, AlQahtani FS, AlShebly MM, Benelli G (2017b) One-pot and eco-friendly synthesis of silver nanocrystals using Adiantum raddianum: toxicity against mosquito vectors of medical and veterinary importance. J Appl Biomed. Doi: 10.1016/j.jab.2016.10.004
  77. Govindarajan M, Kadaikunnan S, Alharbi NS, Benelli G (2017a) Single-step biological fabrication of colloidal silver nanoparticles using Hugonia mystax: mosquito larvicidal potential against dengue, malaria and Zika virus vectors. Artif Cells Nanomed Biotechnol. doi: 10.1080/21691401.2016.1228664
  78. Grzywacz D, Stevenson PC, Mushobozi WL, Belmain S, Wilson K (2014) The use of indigenous ecological resources for pest control in Africa. Food Security 6:71–86Google Scholar
  79. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol Res 112:1451–1459CrossRefGoogle Scholar
  80. Hamza OJ, van den Bout-van den Beukel CJ, Matee MI, Moshi MJ, Mikx FH, Selemani HO, Mbwambo ZH, Van der Ven AJ, Verweij PE (2006) Antifungal activity of some Tanzanian plants used traditionally for the treatment of fungal infections. J Ethnopharmacol 108:124–132CrossRefGoogle Scholar
  81. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CrossRefGoogle Scholar
  82. Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal Chem 50:1–10CrossRefGoogle Scholar
  83. Idolo M, Motti R, Mazzoleni S (2010) Ethnobotanical and phytomedicinal knowledge in a long-history protected area, the Abruzzo, Lazio and Molise National Park (Italian Apennines). J Ethnopharmacol 127:379–395CrossRefGoogle Scholar
  84. Ishwarya R, Baskaralingam V, Sathappan S, Subramani R, Pitchaimani M, Kannan D, Sekar V, Benelli G (2017) Green synthesized silver nanoparticles: toxicity against Poecilia reticulata fishes and Ceriodaphnia cornuta crustaceans. J Clust Sci 28:519–527CrossRefGoogle Scholar
  85. Isman MB (2015) A renaissance for botanical insecticides? Pest Manag Sci 71:1587–1590CrossRefGoogle Scholar
  86. Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19:140–145CrossRefGoogle Scholar
  87. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitol Int 65:276–284CrossRefGoogle Scholar
  88. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627CrossRefGoogle Scholar
  89. Johansson O, Ward M (2017) The human immune system’s response to carcinogenic and other infectious agents transmitted by mosquito vectors. Parasitol Res 116:1–9CrossRefGoogle Scholar
  90. Joseph JM, Sowndhararajan K, Manian S (2010) Protective effects of methanolic extract of Hedyotis puberula (G. Don) R. Br. ex Arn. against experimentally induced gastric ulcers in rat. J Ethnopharmacol 131:216–219CrossRefGoogle Scholar
  91. Kalimuthu K, Panneerselvam C, Chou C et al (2017) Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785:359–372CrossRefGoogle Scholar
  92. Kamaraj C, Balasubramani G, Siva C, Raja M, Balasubramanian V, Raja RK et al (2017) Ag nanoparticles synthesized using β-caryophyllene isolated from Murraya koenigii: antimalarial (Plasmodium falciparum 3D7) and anticancer activity (A549 and HeLa cell lines). J Clust Sci. doi: 10.1007/s10876-017-1180-1186
  93. Kannan RRR, Arumugam R, Iyapparaj P, Thangaradjou T, Anantharaman P (2013) In vitro antibacterial, cytotoxicity and haemolytic activities and phytochemical analysis of seagrasses from the Gulf of Mannar, South India. Food Chem 136:1484–1489CrossRefGoogle Scholar
  94. Kirthi AV, Rahuman AA, Rajakumar G, Marimuthu S, Santhoshkumar T, Jayaseelan C, Velayutham K (2011) Acaricidal, pediculocidal and larvicidal activity of synthesized ZnO nanoparticles using wet chemical route against blood feeding parasites. Parasitol Res 109:461–472CrossRefGoogle Scholar
  95. Kovendan K, Chandramohan B, Dinesh D, Abirami D, Govindarajan M, Vincent S, Benelli G (2016) Green-synthesized silver nanoparticles using Psychotria nilgiriensis: toxicity against the dengue vector Aedes aegypti (Diptera: Culicidae) and impact on the predatory efficiency of the non-target organism Poecilia sphenops (Cyprinodontiformes: Poeciliidae). J Asia Pac Entomol 19:1001–1007CrossRefGoogle Scholar
  96. Kumar CS, Naresh G, Sudheer V, Veldi N, Elumalai A (2011) A short review on therapeutic uses of Couroupita guianensis Aubl. Int Res J Pharm App Sci 1:105–108Google Scholar
  97. Kumar S, Viney L, Deepti P (2015) Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine. doi: 10.2217/NNM.15.112
  98. Laphookhieo S, Karalai C, Ponglimanont C, Chantrapromma K (2004) Pentacyclic triterpenoids esters from the fruits of Bruguiera cylindrica. J Nat Prod 67:886–888CrossRefGoogle Scholar
  99. Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11CrossRefGoogle Scholar
  100. Lees RS, Gilles JRL, Hendrichs J, Vreysen MJB, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162CrossRefGoogle Scholar
  101. Li J, Li Q, Peng Y, Zhao R, Han Z, Gao D (2010) Protective effects of fraction 1a of polysaccharides isolated from Solanum nigrum Linne on thymus in tumor-bearing mice. J Ethnopharmacol 129:350–356CrossRefGoogle Scholar
  102. Lubbe A, Seibert I, Klimkait T, van der Kooy F (2012) Ethnopharmacology in overdrive: the remarkable anti-HIV activity of Artemisia annua. J Ethnopharmacol 14:854–859CrossRefGoogle Scholar
  103. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Mahesh Kumar P, Suresh U, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Benelli G (2015) Sargassum muticum-synthetized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114:4305–4317CrossRefGoogle Scholar
  104. Madhiyazhagan P, Murugan K, Naresh Kumar A, Nataraj T, Subramaniam J, Chandramohan B, Panneerselvam C, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Benelli G (2016) One pot synthesis of silver nanocrystals using the seaweed Gracillaria edulis: biophysical characterization and potential against the filariasis vector Culex quinquefasciatus and the midge Chironomus circumdatus. J Appl Phycol. doi: 10.1007/s10811-016-0953-x
  105. Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria-fabricated silver nanoparticles against the Asian tiger mosquito, Aedes albopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115:751–759CrossRefGoogle Scholar
  106. Mahyoub JA, Aziz AT, Panneerselvam C, Murugan K, Roni M, Trivedi S, Nicoletti M, Hawas UW, Shaher FM, Bamakhrama MA, Canale A, Benelli G (2017) Seagrasses as sources of mosquito nano-larvicides? Toxicity and uptake of Halodule uninervis-biofabricated silver nanoparticles in dengue and Zika virus vector Aedes aegypti. J Clust Sci 28:565–580CrossRefGoogle Scholar
  107. Marcondes CB, Ximenes MF (2015) Zika virus in Brazil and the danger of infestation by Aedes (Stegomyia) mosquitoes. Rev Soc Bras Med Trop. doi: 10.1590/0037-8682-0220-2015
  108. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108:1541–1549CrossRefGoogle Scholar
  109. Marimuthu S, Rahuman AA, Santhoshkumar T, Jayaseelan C, Kirthi AV, Bagavan A, Kamaraj C, Elango G, Zahir AA, Rajakumar G, Velayutham K (2012) Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis. Parasitol Res 111:2023–2033CrossRefGoogle Scholar
  110. Marimuthu S, Rahuman AA, Jayaseelan C, Kirthi AV, Santhoshkumar T, Velayutham K, Bagavan A, Kamaraj C, Elango G, Iyappan M, Siva C, Karthik L, Rao KVB (2013) Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pac J Trop Med 6:682–688CrossRefGoogle Scholar
  111. Mehlhorn H (ed) (2012) Arthropods as vectors of emerging diseases. Parasitol Res Monographs, vol 3. Springer, HeidelbergGoogle Scholar
  112. Mehlhorn H (ed) (2016) Nanoparticles in the fight against parasites. Parasitol Res Monographs, vol 8. Springer, BerlinGoogle Scholar
  113. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefGoogle Scholar
  114. Miresmailli S, Isman MB (2014) Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci 19:29–35CrossRefGoogle Scholar
  115. Mishra G, Srivastava S, Nagori BP (2010) Pharmacological and therapeutic activity of Cissus quadrangularis: an overview. Int J PharmTech Res 2:1298–1310Google Scholar
  116. Mohan VR, Kalidass C, Abragam DA (2010) Ethno-medico-botany of the palliyars of Saduragiri hills, western Ghats, Tamil Nadu. J Econ Taxon Bot 34:639–657Google Scholar
  117. Moo-Puc R, Robledo D, Freile-Pelegrin Y (2008) Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J Ethnopharmacol 120:92–97CrossRefGoogle Scholar
  118. Mueller MS, Karhagomba IB, Hirt HM, Wemakor E (2000) The potential of Artemisia annua L. as a locally produced remedy for malaria in the tropics: agricultural, chemical and clinical aspects. J Ethnopharmacol 73:487–493CrossRefGoogle Scholar
  119. Murthy BK, Nammi S, Kota MK, Rao RVK, Rao NK, Annapurna A (2004) Evaluation of hypoglycemic and antihyperglycemic effects of Datura metel (Linn.) seeds in normal and alloxan-induced diabetic rats. J Ethnopharmacol 91:95–98CrossRefGoogle Scholar
  120. Murugan K, Aamina Labeeba M, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015a) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 102:127–135CrossRefGoogle Scholar
  121. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138CrossRefGoogle Scholar
  122. Murugan K, Benelli G, Suganya A, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015c) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 14:2243–2253CrossRefGoogle Scholar
  123. Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015d) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654CrossRefGoogle Scholar
  124. Murugan K, Dinesh D, Paulpandi M, Dakhellah Meqbel Althbyani A, Subramaniam J, Madhiyazhagan P, Wang L, Suresh U, Mahesh Kumar P, Mohan J, Rajaganesh R, Wei H, Kalimuthu K, Parajulee MN, Mehlhorn H, Benelli G (2015e) Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:4349–4361CrossRefGoogle Scholar
  125. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015f) Predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res 114:3601–3610CrossRefGoogle Scholar
  126. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015g) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res 22:17053–17064CrossRefGoogle Scholar
  127. Murugan K, Jaganathan A, Dinesh D, Suresh U, Rajaganesh R, Chandramohan B, Subramaniam J, Paulpandi M, Vadivalagan C, Wang L, Hwang JS, Wei H, Saleh Alsalhi M, Devanesan S, Kumar S, Pugazhendy K, Higuchi A, Nicoletti M, Benelli G (2016a) Synthesis of nanoparticles using chitosan from crab shells: implications for control of malaria mosquito vectors and impact on non-target organisms in the aquatic environment. Ecotoxicol Environ Saf 132:318–328CrossRefGoogle Scholar
  128. Murugan K, Nataraj D, Madhiyazhagan P, Sujitha V, Chandramohan B, Panneerselvam C, Dinesh D, Chandirasekar R, Kovendan K, Suresh U, Subramaniam J, Paulpandi M, Vadivalagan C, Rajaganesh R, Wei H, Syuhei B, Aziz AT, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016b) Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms. Parasitol Res 115:1071–1083CrossRefGoogle Scholar
  129. Murugan K, Panneerselvam C, Aziz AT, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Saleh Alsalhi M, Benelli G (2016c) Eco-friendly drugs from the marine environment: spongeweed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23:16671–16685Google Scholar
  130. Murugan K, Panneerselvam C, Samidoss CM, Madhiyazhagan P, Suresh U, Roni M, Chandramohan B, Subramaniam J, Dinesh D, Rajaganesh R, Paulpandi M, Wei H, Aziz AT, Saleh Alsalhi M, Devanesan S, Nicoletti M, Pavela R, Canale A, Benelli G (2016d) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci 106:14–22CrossRefGoogle Scholar
  131. Murugan K, Dinesh D, Paulpandi M, Subramaniam J, Rakesh R, Amuthavalli P, Panneerselvam C, Suresh U, Vadivalagan C, Saleh Alsalhi M, Devanesan S, Wei H, Higuchi A, Nicoletti M, Canale A, Benelli G (2017a) Mangrove helps: Sonneratia alba-synthesized silver nanoparticles magnify guppy fish predation against Aedes aegypti young instars and down-regulate the expression of envelope (E) gene in dengue virus (serotype DEN-2). J Clust Sci 28:437–461CrossRefGoogle Scholar
  132. Murugan K, Jaganathan A, Suresh U, Rajaganesh R, Jayasanthini S, Higuchi A, Kumar S, Benelli G (2017b) Towards bio-encapsulation of chitosan-silver nanocomplex? Impact on malaria mosquito vectors, human breast adenocarcinoma cells (MCF-7) and behavioral traits of non-target fishes. J Clust Sci 28:529–550CrossRefGoogle Scholar
  133. Murugan K, Nataraj D, Jaganathan A, Dinesh D, Jayashanthini S, Samidoss CM, Paulpandi M, Panneerselvam C, Subramaniam J, Aziz AT, Nicoletti M, Kumar S, Higuchi A, Benelli G (2017c) Nanofabrication of graphene quantum dots with high toxicity against malaria mosquitoes, Plasmodium falciparum and MCF-7 cancer cells: impact on predation of non-target tadpoles, odonate nymphs and mosquito fishes. J Clust Sci 28:393–411CrossRefGoogle Scholar
  134. Murugan K, Wei J, Saleh Alsalhi M, Nicoletti M, Paulpandi M, Samidoss CM, Dinesh D, Chandramohan B, Paneerselvam C, Subramaniam J, Vadivalagan C, Wei H, Amuthavalli P, Jaganathan A, Devanesan S, Higuchi A, Kumar S, Aziz AT, Nataraj D, Vaseeharan B, Canale A, Benelli G (2017d) Magnetic nanoparticles are highly toxic to chloroquine-resistant Plasmodium falciparum, dengue virus (DEN-2), and their mosquito vectors. Parasitol Res 116:495–502CrossRefGoogle Scholar
  135. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  136. Natarajan K, Selvaraj S, Murty VR (2010) Microbial production of silver nanoparticle. Dig J Nanomater Biostruct 5:135–140Google Scholar
  137. Negrelle RRB, Gomes EC (2007) Cymbopogon citratus (DC.) Stapf: chemical composition and biological activities. Rev Bras Pl Med, Botucatu 9:80–92Google Scholar
  138. Newmaster AF, Berg KJ, Ragupathy S, Palanisamy M, Sambandan K, Newmaster SG (2011) Local knowledge and conservation of seagrasses in the Tamil Nadu State of India. J Ethnobiol Ethnomed 7:37CrossRefGoogle Scholar
  139. Oehler E, Watrin L, Larre P, Leparc-Goffart LS, Valour F, Baudoulin L, Mallet HP, Musso D, Ghawche F (2014) Zika virus infection complicated by Guillain-Barré syndrome—case report, French Polynesia. Euro Surveill 19:20720CrossRefGoogle Scholar
  140. Orabi KY, Mossa JS, El-Feraly FS (1991) Isolation and characterization of two antimicrobial agents from mace (Myristica fragrans). J Nat Prod 54:856–859CrossRefGoogle Scholar
  141. Panneerselvam C, Murugan K, Roni M, Aziz AT, Suresh U, Rajaganesh R, Madhiyazhagan P, Subramaniam J, Dinesh D, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Desneux N, Benelli G (2016) Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity. Parasitol Res 115:997–1013CrossRefGoogle Scholar
  142. Patil DA, Patil PS, Ahirrao YA, Aher UP, Dushing YA (2010) Ethnobotany of Buldhana district (Maharashtra: India): plants used in veterinary medicine. J Phytol 2:22–34Google Scholar
  143. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  144. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefGoogle Scholar
  145. Pattanaik C, Reddy CS, Dhal NK, Das R (2008) Utilisation of mangrove forests in Bhitarkanika wildlife sanctuary, Orissa. Indian J Tradit Knowl 7:598–603Google Scholar
  146. Pavela R (2015) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crops Prod 76:174–187Google Scholar
  147. Pavela R (2016a) History, presence and perspective of using plant extracts as commercial botanical insecticides and farm products for protection against insects–a review. Plant Prot Sci 52:229–241CrossRefGoogle Scholar
  148. Pavela R (2016b) Encapsulation–a convenient way to extend the persistence of the effect of eco-friendly mosquito larvicides. Curr Org Chem 20:2674–2680CrossRefGoogle Scholar
  149. Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors - a review. Exp Parasitol 167:103–108CrossRefGoogle Scholar
  150. Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Trends Plant Sci 21:1000-1007Google Scholar
  151. Pavela R, Canale A, Mehlhorn H, Benelli G (2016) Application of ethnobotanical repellents and acaricides in prevention, control and management of livestock ticks: a review. Res Vet Sci 109:1–9CrossRefGoogle Scholar
  152. Pavela R, Murugan K, Canale A, Benelli G (2017) Saponaria officinalis-synthesized silver nanocrystals as effective biopesticides and oviposition inhibitors against Tetranychus urticae Koch. Ind Crop Prod 97:338–344CrossRefGoogle Scholar
  153. Ponnusamy Y, Chear NJ-Y, Ramanathan S, Lai C-S (2015) Polyphenols rich fraction of Dicranopteris linearis promotes fibroblast cell migration and proliferation in vitro. J Ethnopharmacol 168:305–314CrossRefGoogle Scholar
  154. Priya SP, Sakinah S, Ling MP, Chee H-Y, Higuchi A, Hamat RA, Neela VK, Alarfaj AA, Munusamy MA, Hatamleh AA, Al-Sabri AE, Al-Suwailem IAA, Rajan M, Benelli G, Marlina, Kumar SS (2017) Micro-anatomical changes in major blood vessel caused by dengue virus (serotype 2) infection. Acta Trop 171:213-219Google Scholar
  155. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  156. Rajakumar G, Rahuman AA (2012) Acaricidal activity of aqueous extract and synthesized silver nanoparticles from Manilkara zapota against Rhipicephalus (Boophilus) microplus. Res Vet Sci 93:303–309CrossRefGoogle Scholar
  157. Rajakumar G, Rahuman AA, Velayutham K, Ramyadevi J, Jeyasubramanian K, Marikani A, Elango G, Kamaraj C, Santhoshkumar T, Marimuthu S, Zahir AA, Bagavan A, Jayaseelan C, Kirthi AV, Iyappan M, Siva C (2013) Novel and simple approach using synthesized nickel nanoparticles to control blood-sucking parasites. Vet Parasitol 191:332–339CrossRefGoogle Scholar
  158. Rajakumar G, Rahuman AA, Jayaseelan C, Santhoshkumar T, Marimuthu S, Kamaraj C, Bagavan A, Zahir AA, Kirthi AV, Elango G, Arora P, Rajan Karthikeyan R, Manikandan S, Jose S (2014) Solanum trilobatum extract-mediated synthesis of titanium dioxide nanoparticles to control Pediculus humanus capitis, Hyalomma anatolicum anatolicum and Anopheles subpictus. Parasitol Res 113:469–479Google Scholar
  159. Rajakumar G, Rahuman AA, Roopan SM, Chung IM, Anbarasan K, Karthikeyan V (2015) Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol Res 114:571–581CrossRefGoogle Scholar
  160. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel bio-compatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  161. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88CrossRefGoogle Scholar
  162. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA, Santhoshkumar T, Kirthi AV, Jayaseelan C, Marimuthu S (2011) Copper nanoparticles synthesized by polyol process used to control hematophagous parasites. Parasitol Res 109:1403–1415CrossRefGoogle Scholar
  163. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622CrossRefGoogle Scholar
  164. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Nicoletti M, Madhiyazhagan P, Dinesh D, Suresh U, Khater HF, Wei H, Canale A, Alarfaj AA, Munusamy MA, Higuchi A, Benelli G (2015) Characterization and biotoxicity of Hypnea musciformis-synthesized silver nanoparticles as potential eco-friendly control tool against Aedes aegypti and Plutella xylostella. Ecotoxicol Environ Saf 121:31–38CrossRefGoogle Scholar
  165. Ruiz L, Ruiz L, Maco M, Cobos M, Gutierrez-Choquevilca A-L, Roumy V (2011) Plants used by native Amazonian groups from the Nanay River (Peru) for the treatment of malaria. J Ethnopharmacol 133:917–921CrossRefGoogle Scholar
  166. Santhoshkumar T, Rahuman AA, Bagavan A, Marimuthu S, Jayaseelan C, Kirthi AV, Kamaraj C, Rajakumar G, Zahir AA, Elango G, Velayutham K, Iyappan M, Siva C, Karthik L, Rao KVB (2012) Evaluation of stem aqueous extract and synthesized silver nanoparticles using Cissus quadrangularis against Hippobosca maculata and Rhipicephalus (Boophilus) microplus. Exp Parasitol 132:156–165CrossRefGoogle Scholar
  167. Sanz-Biset J, Campos-de-la-Cruz J, Epiquién-Rivera MA, Cañigueral S (2009) A first survey on the medicinal plants of the Chazuta valley (Peruvian Amazon). J Ethnopharmacol 122:333–362CrossRefGoogle Scholar
  168. Sekhar J, Pratap GP, Sudarsanam G, Prasad GP (2011) Ethnic information of treatments for snake bites in Kadapa district of Andhra Pradesh. Life Sci Leaflets 12:368–375Google Scholar
  169. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2010) Nature helps: from research to products against blood sucking parasites. Parasitol Res 105:1483–1487CrossRefGoogle Scholar
  170. Semmler M, Abdel-Ghaffar F, Schmidt J, Mehlhorn H (2014) Evaluation of biological and chemical insect repellents and their potential adverse effects. Parasitol Res 113:185–188CrossRefGoogle Scholar
  171. Senthil Nathan S, Kalaivani K, Murugan K (2005) Effects of neem limonoids on the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Acta Trop 96:47–55CrossRefGoogle Scholar
  172. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502CrossRefGoogle Scholar
  173. Sharma RGL (2002) Studies on antimycotic properties of Datura metel. J Ethnopharmacol 80:193–197CrossRefGoogle Scholar
  174. Son Y-O, Kim J, Lim J-C, Chung Y, Chung G-H, Lee J-C (2003) Ripe fruits of Solanum nigrum L. inhibits cell growth and induces apoptosis in MCF-7 cells. Food Chem Toxicol 41:1421–1428CrossRefGoogle Scholar
  175. Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasitol Res 113:4015–4022CrossRefGoogle Scholar
  176. Srinivasan D, Nathan S, Suresh T, Perumalsamy PL (2001) Antimicrobial activity of certain Indian medicinal plants used in folkloric medicine. J Ethopharmacol 74:217–220CrossRefGoogle Scholar
  177. Srivastava SK, Rawat AKS (2007) Pharmacognostic evaluation of the roots of Berberis tinctoria. Nat Prod Sci 13:27–32Google Scholar
  178. Steenkamp V (2003) Traditional herbal remedies used by South African women for gynaecological complaints. J Ethnopharmacol 86:97–108CrossRefGoogle Scholar
  179. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499CrossRefGoogle Scholar
  180. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res 22:20067–20083CrossRefGoogle Scholar
  181. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23:7543–7558CrossRefGoogle Scholar
  182. Subramaniam J, Murugan K, Jebanesan A, Pontheckan P, Dinesh D, Nicoletti M, Wei H, Higuchi A, Kumar S, Canale A, Benelli G (2017) Do Chenopodium ambrosioides-synthesized silver nanoparticles impact Oryzias melastigma predation against Aedes albopictus larvae? J Clust Sci 28:413–436CrossRefGoogle Scholar
  183. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRefGoogle Scholar
  184. Sujitha V, Murugan K, Dinesh D, Pandiyan A, Aruliah R, Hwang JS, Kalimuthu K, Panneerselvam C, Higuchi A, Aziz AT, Kumar S, Alarfaj AA, Vaseeharan B, Canale A, Benelli G (2017) Green-synthesized CdS nano-pesticides: toxicity on young instars of malaria vectors and impact on enzymatic activities of the non-target mud crab Scylla serrata. Aquat Toxicol 188:100–108CrossRefGoogle Scholar
  185. Sundararajan B, Kumari BR (2017) Novel synthesis of gold nanoparticles using Artemisia vulgaris L. leaf extract and their efficacy of larvicidal activity against dengue fever vector Aedes aegypti L. J Trace Elem Med Biol. doi: 10.1016/j.jtemb.2017.03.008
  186. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  187. Suresh U, Murugan K, Panneerselvam C, Rajaganesh R, Roni M, Aziz AT, Naji Al-Aoh HA, Trivedi S, Hasibur Rehman H, Kumar S, Higuchi A, Canale A, Benelli G (2017) Suaeda maritima-based herbal coils and green nanoparticles as potential biopesticides against the dengue vector Aedes aegypti and the tobacco cutworm Spodoptera litura. Physiolol Mol Plant Pathol. doi: 10.1016/j.pmpp.2017.01.002
  188. Theerthagiri J, Madhavan J, Murugan K, Samidoss CM, Kumar S, Higuchi A, Benelli G (2017) Flower-like copper sulfide nanocrystals are highly effective against chloroquine-resistant Plasmodium falciparum and the malaria vector Anopheles stephensi. J Clust Sci 28:581–594CrossRefGoogle Scholar
  189. Thiengsusuk A, Chaijaroenkul W, Na-Bangchang K (2013) Antimalarial activities of medicinal plants and herbal formulations used in Thai traditional medicine. Parasitol Res 112:1475–1481CrossRefGoogle Scholar
  190. Tona L, Kambu K, Ngimbi N, Cimanga K, Vlietinck AJ (1998) Antiamoebic and phytochemical screening of some Congolese medicinal plants. J Ethnopharmacol 61:57–65CrossRefGoogle Scholar
  191. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220CrossRefGoogle Scholar
  192. Turek C, Stintzing FC (2013) Stability of essential oils: a review. Compr Rev Food Food Sci Saf 12:40–53CrossRefGoogle Scholar
  193. Upadhya V, Hegde HV, Bhat S, Hurkadale PJ, Kholkute SD, Hegde GR (2012) Ethnomedicinal plants used to treat bone fracture from North-Central Western Ghats of India. J Ethnopharmacol 142:557–562CrossRefGoogle Scholar
  194. Vadivalagan C, Karthika P, Murugan K, Panneerselvam C, Del Serrone P, Benelli G (2017) Exploring genetic variation in haplotypes of the filariasis vector Culex quinquefasciatus (Diptera: Culicidae) through DNA barcoding. Acta Trop 169:43-50Google Scholar
  195. Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096CrossRefGoogle Scholar
  196. Veerakumar K, Govindarajan M, Hoti SL (2014) Evaluation of plant-mediated synthesized silver nanoparticles against vector mosquitoes. Parasitol Res 113:4567–4577CrossRefGoogle Scholar
  197. Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimuthu S, Jayaseelan C, Bagavan A, Kirthi AV, Kamaraj C, Zahir AA, Elango G (2012) Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 111:2329–2337CrossRefGoogle Scholar
  198. Villaseñor IM, Lamadrid MRA (2006) Comparative anti-hyperglycemic potentials of medicinal plants. J Ethnopharmacol 104:129–131CrossRefGoogle Scholar
  199. Vincent S, Kovendan K, Chandramohan B, Kamalakannan S, Mahesh Kumar P, Vasugi V, Praseeja C, Subrmaniam J, Govindarajan M, Murugan K, Benelli G (2017) Swift fabrication of silver nanoparticles using Bougainvillea glabra: potential against the Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Clust Sci 28:37–58CrossRefGoogle Scholar
  200. Wahab A, Ul Haq R, Ahmed A, Khan RA, Raza M (2009) Anticonvulsant activities of nutmeg oil of Myristica fragrans. Phytother Res 23:153–158CrossRefGoogle Scholar
  201. Ward M, Benelli G (2017) Avian and simian malaria: do they have a cancer connection? Parasitol Res 116:839-845Google Scholar
  202. Webster JP, Gower CM, Knowles SC, Molyneux DH, Fenton A (2016) One Health–an ecological and evolutionary framework for tackling neglected zoonotic diseases. Evol Appl 9:313–333CrossRefGoogle Scholar
  203. White NJ (2011) Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10(297):1–35Google Scholar
  204. White NJ (2015) Declining malaria transmission and pregnancy outcomes in southern Mozambique. N Engl J Med 373:1670–1671CrossRefGoogle Scholar
  205. WHO (2012) Handbook for integrated vector management. World Health Organization, GenevaGoogle Scholar
  206. WHO (2014) Lymphatic filariasis. Fact sheet N°102. World Health Organization, GenevaGoogle Scholar
  207. WHO (2015a) Fact sheet: world malaria report 2015. Updated 9 December 2015Google Scholar
  208. WHO (2015b) Dengue and severe dengue. Fact sheet N°117 updated May 2015Google Scholar
  209. WHO (2015c) WHO updates on artemisinin resistance http://www.who.int/malaria/areas/drug_resistance/updates/en/
  210. WHO (2016) Zika virus. Fact sheet N°1 updated January 2016Google Scholar
  211. Yamany AS, Mehlhorn H, Adham FK (2012) Yolk protein uptake in the oocyte of the Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae). Parasitol Res 111:1315–1324CrossRefGoogle Scholar
  212. Zahir AA, Rahuman AA (2012) Evaluation of different extracts and synthesised silver nanoparticles from leaves of Euphorbia prostrata against Haemaphysalis bispinosa and Hippobosca maculata. Vet Parasitol 187:511–520CrossRefGoogle Scholar
  213. Zihiri GN, Mambu L, Guédé-Guina F, Bodo B, Grellier P (2005) In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol 98:281–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Giovanni Benelli
    • 1
  • Filippo Maggi
    • 2
  • Roman Pavela
    • 3
  • Kadarkarai Murugan
    • 4
  • Marimuthu Govindarajan
    • 5
  • Baskaralingam Vaseeharan
    • 6
  • Riccardo Petrelli
    • 2
  • Loredana Cappellacci
    • 2
  • Suresh Kumar
    • 7
  • Anders Hofer
    • 8
  • Mohammad Reza Youssefi
    • 9
  • Abdullah A. Alarfaj
    • 10
  • Jiang-Shiou Hwang
    • 11
  • Akon Higuchi
    • 12
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.School of PharmacyUniversity of CamerinoCamerinoItaly
  3. 3.Crop Research InstitutePrague 6Czech Republic
  4. 4.Department of BiotechnologyThiruvalluvar UniversityVelloreIndia
  5. 5.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  6. 6.Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and ManagementAlagappa UniversityKaraikudiIndia
  7. 7.Department of Medical Microbiology and ParasitologySerdangMalaysia
  8. 8.Department of Medical Biochemistry and BiophysicsUmeå UniversityUmeåSweden
  9. 9.Department of Veterinary Parasitology, Babol-BranchIslamic Azad UniversityBabolIran
  10. 10.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  11. 11.Institute of Marine BiologyNational Taiwan Ocean UniversityKeelungTaiwan
  12. 12.Department of Chemical and Materials EngineeringNational Central UniversityTaoyuanTaiwan

Personalised recommendations