Skip to main content
Log in

Adsorption mechanism of chromium(III) using biosorbents of Jatropha curcas L.

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The removal of Cr3+ from water solutions by biosorbents from the rind, endosperm, and endosperm + episperm of the Jatropha curcas was evaluated. Adsorption tests were performed in batch systems for evaluating the influence of the solution’s pH, adsorbent mass, contact time, initial Cr3+ concentrations, and solution temperature during the adsorption process. Kinetic, adsorption isotherm, and thermodynamic studies were performed to investigate the mechanisms that control adsorption. Ideal conditions for the adsorption process included pH of the solution of 5.5 and 8 g L−1 adsorbent mass, within 60 min time contact between adsorbent and adsorbate. Maximum adsorption capacities by Langmuir model for rind, endosperm, and endosperm + episperm of the J. curcas were, respectively, 22.11, 18.20, and 22.88 mg g−1, with the occurrence of chemosorption in mono and multilayers. Results show that the biosorbents obtained from J. curcas have a high potential to recuperate Cr3+ from contaminated water sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AOAC (2005) AOAC—Association of Official Analytical Chemists, Official methods of analysis, eighteenth edn. AOAC, Gaithersburg

  • ATSDR (2014) ATSDR—Agency for Toxic Substances and Disease Registry. Toxic Substances Index, 2014, http://www.atsdr.cdc.gov/az/a.html

  • Bajpai J, Shrisvastava R, Bajpai AK (2004) Dynamic and equilibrium studies on adsorption of Cr(VI) ions onto binary bio-polymeric beads of cross linked alginate and gelatin. Colloids Surf A 236:81–90

    Article  CAS  Google Scholar 

  • Barka N, Abdennouri M, Boussaoud A, Makfouk ME (2010) Biosorption characteristics of cadmium(II) onto Scolymus hispanicus L. as low-cost natural biosorbent. Desalination 258:66–71

    Article  CAS  Google Scholar 

  • Choppala G, Bolan N, Park JH (2013) Chapter two—chromium contamination and its risk management in complex environmental settings. Adv Agron 120:129–172

    Article  CAS  Google Scholar 

  • Coelho GF, Gonçalves AC Jr, Tarley CRT, Casarin J, Nacke H, Francziskowski MA (2014) Removal of metal ions Cd (II), Pb (II) and Cr (III) from water by the cashew nut shell Anarcadium occidentale L. Ecol Eng 73:514–525

    Article  Google Scholar 

  • Contran N, Chessa L, Lubino M, Bellavite D, Roggero PP, Enne G (2013) State-of-the-art of the Jatropha curcas productive chain: from sowing to biodiesel and by-products. Ind Crops Prod 42:202–215

    Article  CAS  Google Scholar 

  • Crini G, Badot P-M (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33(4):399–447

  • Debrassi A, Largura MCT, Rodrigues CA (2011) Adsorption of congo red dye by hydrophobic o-carboxymethyl chitosan derivatives. Quim Nova 34(2011):764–770

    CAS  Google Scholar 

  • Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229

    Article  CAS  Google Scholar 

  • FACT (2010) The Jatropha handbook: from cultivation to application, http://fact-foundation.com/library/bioenergy-feedstock/jatropha/jatropha-handbook

  • Febrianto J, Kosasih AN, Sunarso J, Ju YH, Indraswati N, Ismadji S (2009) Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. J Hazard Mater 162:616–645

    Article  CAS  Google Scholar 

  • Feng N, Guo X, Liang S, Zhu Y, Liu J (2011) Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. J Hazard Mater 185:49–54

    Article  CAS  Google Scholar 

  • Gaballah I, Kilbetus G (1998) Recovery of heavy metal ions through decontamination of synthetic solutions and industrial effluents using modified barks. J Geochem Explor 62:241–286

    Article  CAS  Google Scholar 

  • Gao XL, Chen CTA (2012) Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Res 46:1901–1911

    Article  CAS  Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent chromium from aqueous solution by agricultural waste biomass. J Hazard Mater 140:60–68

    Article  CAS  Google Scholar 

  • Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc 111:3973–3993

  • Girods P, Dufour A, Fierro V, Rogaume Y, Rogaume C, Zoulalian A, Celzard A (2009) Activated carbons prepared from wood particleboard wastes: characterization and phenol adsorption capacities. J Hazard Mater 166:491–501

    Article  CAS  Google Scholar 

  • Gonçalves AC Jr, Nacke H, Fávere VT, Gomes GD (2010) Comparison between an anionic exchanger of chitosan quaternary ammonium salt and a commercial exchanger in the extraction of available phosphorus in soils. Quim Nova 33:1047–1052

    Article  Google Scholar 

  • Gundogdu A, Ozdes D, Duran C, Bulut VN, Soylak M, Senturk HB (2009) Biosorption of Pb(II) ions from aqueous solution by pine bark (Pinus brutia Ten.) Chem Eng J 153:62–69

    Article  CAS  Google Scholar 

  • Guo X, Zhang S, Shan X (2008) Adsorption of metal ions on lignin. J Hazard Mater 151:4–142

    Google Scholar 

  • Han L, Zhang C, Song C, Zhang M, Zhu H, Zhang L (2010) Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydr Polym 79:1140–1149

    Article  CAS  Google Scholar 

  • Ho YS, Ofomaja AE (2006) Pseudo-second order model for lead ion sorption from aqueous solutions onto palm kernel fiber. J Hazard Mater 129:137–142

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(1999):451–465

    Article  CAS  Google Scholar 

  • Hossain MA, Ngo HH, Guo WS, Nguyen TV (2012) Biosorption of Cu(II) from water by banana peel based biosorbent: experiments and models of adsorption and desorption. J Water Sustain 2:87–104

    CAS  Google Scholar 

  • Iqbal M, Saeed A, Zafar SI (2009) FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater 164(2009):161–171

    Article  CAS  Google Scholar 

  • IUPAC (1988) IUPAC—International Union of Pure and Applied Chemistry. Standard methods for the analysis of oils, fats and derivatives: method 1121. In: Paquot C, Haufenne A (eds) Determination of moisture and volatiles matter content, seventh edn. IUPAC, Oxford, pp 13–16

    Google Scholar 

  • Khattri SD, Singh MK (2000) Colour removal from synthetic dye wastewater using a bioadsorbent. Water Air Soil Pollut 120:283–294

    Article  CAS  Google Scholar 

  • Lin SH, Juang RS (2002) Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater 97:315–326

  • Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics: review. Sep Purif Technol 61:229–242

    Article  CAS  Google Scholar 

  • Mallick S, Dash SS, Parida KM (2006) Adsorption of hexavalent chromium on manganese nodule leached residue obtained from NH3–SO2 leaching. J Colloid Interface Sci 297:419–425

    Article  CAS  Google Scholar 

  • Meneghel AP, Gonçalves AC Jr, Rubio F, Dragunski DC, Lindino CA, Strey L (2013) Biosorption of cadmium from water using moringa (Moringa oleifera Lam.) seeds. Water Air Soil Pollut 224:1383–1396

    Article  Google Scholar 

  • Mimura AMS, Vieira TVA, Martelli PB, Gorgulho HF (2010) Utilization of rice husk to remove Cu2+, Al3+, Ni2+ and Zn2+ from wastewater. Quim Nova 33:1279–1284

    Article  CAS  Google Scholar 

  • Namasivayam C, Prabha D, Kumutha M (1998) Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour Technol 64:77–79

    Article  CAS  Google Scholar 

  • Namasivayam C, Sangeeta D, Gunasekaran R (2007) Removal of anions, heavy metals, organics and dyes from water by adsorption onto a new activated carbon from Jatropha husk, an agro-industrial solid waste. Proc Saf Environ Protec 85:181–184

    Article  CAS  Google Scholar 

  • Njoku VO, Oguzie EE, Bi C, Bello OS, Ayuk AA (2011) Adsorption of copper (II) and lead (II) from aqueous solutions onto a Nigerian natural clay. Aust J Basic Appl 5:346–353

    CAS  Google Scholar 

  • Ofomaja AE (2010) Equilibrium studies of copper ion adsorption onto palm kernel fibre. J Environ Manag 91:1491–1499

    Article  CAS  Google Scholar 

  • Pavan FA, Lima EC, Dias SL, Mazzocato AC (2008) Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J Hazard Mater 150:703–712

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T, Cetin S, Bhanger MI (2009) Lead sorption by waste biomass of hazelnut and almond shell. J Hazard Mater 167:1203–1208

    Article  CAS  Google Scholar 

  • Prola LDT, Acayanka E, Lima EC, Umpierres CS, Vaghetti JCP, Santos WO, Laminsi S, Djifon PT (2013) Comparision of Jatropha curcas shells in natural form and treated by non-thermal plasma as biosorbents for removal of reactive red 120 textile dye from aqueous solution. Ind Crop Prod 46:328–340

    Article  CAS  Google Scholar 

  • Rocha ORS, Nascimento GE, Campos NF, Silva VL, Duarte MMMB (2012) Evaluation of adsorption process using green coconut mesocarp for removal of reative gray BF-2R dye. Quim Nova 35:1369–1374

    Article  Google Scholar 

  • Romero-González J, Peralta-Videa JR, Rodríguez E, Ramirez SL, Gardea-Torresdey JL (2005) Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J Chem Thermodyn Thermochem 37:343–347

    Article  Google Scholar 

  • Rubio F, Gonçalves AC Jr, Dragunski DC, Tarley CRT, Meneghel AP, Schwantes D (2013) A Crambe abyssinica seed by-product as biosorbent for lead(II) removal from water. Desalin Water Treat 51:1–10

    Article  Google Scholar 

  • Santhi T, Manonmani S, Smitha T (2010) Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. J Hazard Mater 179:178–186

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M, Citak D, Soylak M (2007) Equilibrium, kinetic and thermodynamic studies of adsorption of Pb (II) from aqueous solution onto Turkish kaolinite clay. J Hazard Mater 149:283–291

    Article  CAS  Google Scholar 

  • Šciban M, Radetic B, Kevrešan Z, Klašnja M (2007) Adsorption of heavy metals from electroplating wastewater by wood sawdust. Bioresour Technol 98(3):402–409

  • Sekhar KC, Kamala CT, Chary NS, Anjaneyulu Y (2003) Removal of heavy metals using a plant biomass with reference to environmental control. Int J Miner Process 68:37–45

    Article  Google Scholar 

  • Shtangeeva I, Steinnes E, Lierhagen S (2011) Macronutrients and trace elements in rye and wheat: similarities and differences in uptake and relationships between elements. Environ Exp Bot 70:259–265

    Article  CAS  Google Scholar 

  • Singha B, Das SK (2011) Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies. Colloids Surf B 84:221–232

    Article  CAS  Google Scholar 

  • Smith B (1999) Infrared Spectral Interpretation: a systematic approach, 1st edn. CRC Press LLC, Boca Raton, Florida

  • Smith WLE, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J. Appl. Microbiol. 88:983–991

    Article  CAS  Google Scholar 

  • Sodré FF, Lenzi E, Costa AC (2001) Utilização de modelos físico-químicos de adsorção no estudo do comportamento do cobre em solos argilosos. Quim Nova 24:324–330

    Article  Google Scholar 

  • Suwalsky M, Castro R, Villena F, Sotomayor CP (2008) Cr(III) exerts stronger structural effects than Cr(VI) on the human erythrocyte membrane and molecular models. J Inorg Biochem 102:842–849

    Article  CAS  Google Scholar 

  • Tongpoothorn W, Sriuttha M, Homchan P, Chantai S, Ruangviriyachai C (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89:335–340

    Article  CAS  Google Scholar 

  • Tseng R, Wu CF, Juang SR (2003) Liquid-phase adsorption of dyes and phenols using pinewood-based activated carbons. Carbon 41:487–495

    Article  CAS  Google Scholar 

  • Vadivelan V, Kumar KV (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Hanafiah MAKM (2008) Biosorpiton of copper ions from dilute aqueous solutions on base treated rubber (Hevea brasiliensis) leaves powder: kinetics, isotherm, and biosorption mechanisms. J Environ Sci 20:1168–1176

    Article  CAS  Google Scholar 

  • Wan Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. J Environ Manag 91:958–969

    Article  Google Scholar 

  • Wang Y, Tsang DCW (2013) Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents. J Environ Sci 25:2291–2298

    Article  CAS  Google Scholar 

  • Welz B, Sperling M (1999) Atomic absorption spectrometry. Wiley-VCH, Weinheim

  • Yadav SK, Juwarkar AA, Kumar GP, Thawale PR, Singh SK, Chakrabarti T (2009) Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technol 100:4616–4622

    Article  CAS  Google Scholar 

  • Yang X, Al-Duri B (2005) Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface 287:25–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Affonso Celso Gonçalves Jr..

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.C., Nacke, H., Schwantes, D. et al. Adsorption mechanism of chromium(III) using biosorbents of Jatropha curcas L.. Environ Sci Pollut Res 24, 21778–21790 (2017). https://doi.org/10.1007/s11356-017-9749-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9749-z

Keywords

Navigation