Skip to main content
Log in

Physiological mechanisms of a wetland plant (Echinodorus osiris Rataj) to cadmium detoxification

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Physiological responses of Echinodorus osiris Rataj plant under cadmium (Cd) stress (5 and 15 mg L−1) were studied by researching the change of non-enzymatic antioxidants and the exudation of root organic acids. There was a significant increase of ascorbic acid, glutathione, and non-protein thiols in the plant, and the increment was much obvious in roots than that in leaves with increased Cd stress. The accumulation of Cd was associated with mitochondrial structural damages in roots, while the organelle structure, such as chloroplast, in leaves remains intact. In exudates collected from the plants in the treatment with 15 mg L−1 Cd, oxalate, citric, and succinic acids responded intensively than other organic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101(2):131–146

    Article  CAS  Google Scholar 

  • Chen JR, Shafi M, Wang Y, Wu JS, Ye ZQ, Liu C, Zhong B, Guo H, He LZ, Liu D (2016) Organic acid compounds in root exudation of Moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals. Environ Sci Pollut Res 23:20977–20984

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Cuypers A, Plusquin M, Remans T, Jozefczak M, Keunen E, Gielen H, Opdenakker K, Ravindran Nair A, Munters E, Artois T, Nawrot Tim S, Vangronsveld J, Smeets K (2010) Cadmium stress: an oxidative challenge. Biometals 23:927–940

    Article  CAS  Google Scholar 

  • De Vos CHR, Vonk MJ, Vooijs R, Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98:853–858

    Article  Google Scholar 

  • Dresler S, Bednarek W, Wojcik M (2014) Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare L. Ecotox Environ Saf 104:332–338

    Article  CAS  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Fernandez RM, Fernandezfuego D, Bertrand A, Gonzalez AR (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70

    Article  CAS  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155(1):93–100

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  Google Scholar 

  • Grill E, Mishra S, Srivastava S, Tripathi RD (2006) Role of phytochelatins inphytoremediation of heavy metals. In: Singh, S.N., Tripathi, R.D. (Eds.), nvironmental Bioremediation Technologies. Springer, Heidelberg, pp. 101–145

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  Google Scholar 

  • Heyno E, Klose C, Krieger-Liszkay A (2008) Origin of cadmium-induced reactive oxygen species production: mitochondrial electron transfer versus plasma membrane NADPH oxidase. New Phytol 179:687–699

    Article  CAS  Google Scholar 

  • Ishikawa T, Shigeoka S (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci Biotechnol Biochem 72(5):1143–1154

    Article  CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hard Mater 156(1):387–397

    Article  CAS  Google Scholar 

  • Keltjens WG, Van Beusichem ML (1998) Phytochelatins as biomarkers for heavy metal stress in maize (Zea mays L.) and wheat (Triticum aestivum L.): combined effects of copper and cadmium. Plant Soil 203:119–126

    Article  CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12(10):6894–6918

    Article  CAS  Google Scholar 

  • Klug B, Horst WJ (2010) Oxalate exudation into the root-tip water free space confers protection from aluminum toxicity and allows aluminum accumulation in the symplast in buckwheat (Fagopyrum esculentum). New Phytol 187(2):380–391

    Article  CAS  Google Scholar 

  • Li L, Hong C, Pan JX, Zhang CL, Gu MH, He B (2010) Effect of amendments on phytoremediation of Echinodorus Osiris in the soil contaminated by cadmium and lead. Ecol Environ Sci 19(4):822–855

    Google Scholar 

  • Li QF, Zhang CL, Zhang P, Gu MH, Zhao LY, Liu JL, Li PP (2012) Absorption dynamics of Cd and Zn by Echinodorus osiris. Ecol Environ Sci 21(6):1138–1142

    Google Scholar 

  • Liu Q, Tjoa A, Romheld V (2007) Effects of chloride and co-contaminated zinc on cadmium accumulation within Thlaspi caerulescens and durum wheat. Bull Environ Contam Toxicol 79(1):62–65

    Article  CAS  Google Scholar 

  • Liu WR, Zhang L, Yang WW, Li XF, Pan LP, Li Q, Zhang CL (2014) Effect of organic acids amendment on cadmium uptake and translocation by Echinodorus osiris. Chin J Soil Sci 45(1):205–209

    CAS  Google Scholar 

  • Ma JF (2000) Role of organic acids in detoxification of aluminum in higher plants. Plant Cell Physiol 41(4):383–390

    Article  CAS  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht JK, Gupta HS (2009). Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42(3): 305-313

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Phys 49:249–279

    Article  CAS  Google Scholar 

  • Paradiso A, Berardino R, De Pinto MC, Toppi LS, Storelli MM, Tommasi F, De Gara L (2008) Increase in ascorbate-glutathione metabolism as local and precocious systemic responses induced by cadmium in durum wheat plants. Plant Cell Physiol 49(3):362–374

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metalchelators produced by plants—the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    Article  CAS  Google Scholar 

  • Rocha AC, Almeida CM, Basto MC (2016) Marsh plant response to metals: exudation of aliphatic low molecular weight organic acids (ALMWOAs)[J]. Estuar Coast Shelf Sci 2016:77–84

    Article  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Phys 49:643–668

    Article  CAS  Google Scholar 

  • Schwarzländer M, Fricker MD, Sweetlove LJ (2009) Monitoring the in vivo redox state of plant mitochondria: effect of respiratory inhibitors, abiotic stress and assessment of recovery from oxidative challenge. Biochim Biophys Acta 1787:468–475

  • Tanaka K, Suda Y, Kondo N, Sugahara K (1985) O3 tolerance and the ascorbate-dependent H2O2 decomposing system in chloroplasts. Plant Cell Physiol 26(7):1425–1431

    CAS  Google Scholar 

  • Thurman DA, Rankin JL (1982) The role of organic acids in zinc tolerance in deschampsia. New Phytol 91(4):629–635

    Article  CAS  Google Scholar 

  • Ueno K, Kinoshita T, Inoue S, Emi T, Shimazaki K (2005) Biochemical characterization of plasma membrane H -ATPase activation in guard cell protoplasts of arabidopsis thaliana in response to blue light. Plant Cell Physiol 46(6): 955-963

  • Upadhyay RK (2014) Metal stress in plants: its detoxification in natural environment. Braz J Bot 37(4):377–282

    Article  Google Scholar 

  • Xie X, Weiss DJ, Weng B, Liu J, Lu H, Yan C, Yan CL (2013) The short-term effect of cadmium on low molecular weight organic acid and amino acid exudation from mangrove (Kandelia obovata (S, L) Yong) roots. Environ Sci Pollut Res Int 20(2):997–1008

    Article  CAS  Google Scholar 

  • Xu Q, Wang CQ, Li SG, Li B, Li QQ, Chen GD, Chen WL, Wang F (2017) Cadmium adsorption, chelation and compartmentalization limit root-to-shoot translocation of cadmium in rice (Oryza sativa L.) Environ Sci Pollut Res 24:11319–11330

    Article  CAS  Google Scholar 

  • Zhang CL, Chen WH, Wei BM, Liu XZ, Lv PF (2008) Response of physiology and biochemistry of plants in wetland to heavy metal cadmium stress. Ecol Environ 17(4):1458–1461

    Google Scholar 

  • Zhang CL, Zhang P, Mo CR, Yang WW, Li QF, Pan LP, Lee D (2013) Cadmium uptake, chemical forms, subcellular distribution, and accumulation in Echinodorus osiris Rataj. Environ Sci Processes Impacts 15(7):1459–1465

    Article  CAS  Google Scholar 

  • Zhu XF, Zheng C, Hu YT, Jiang T, Liu Y, Dong NY, Zheng SJ (2011) Cadmium-induced oxalate secretion from root apex is associated with cadmium exclusion and resistance in Lycopersicon esulentum. Plant Cell Environ 34(7):1055–1064

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.41061045, No. 41461091) and the National Natural Science Foundation of Guangxi, China (2014GXNSFAA18039, 2015GXNSFEA139001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaolan Zhang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Huang, H., Liu, W. et al. Physiological mechanisms of a wetland plant (Echinodorus osiris Rataj) to cadmium detoxification. Environ Sci Pollut Res 24, 21859–21866 (2017). https://doi.org/10.1007/s11356-017-9744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9744-4

Keywords

Navigation