Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 30, pp 29848–29859 | Cite as

Evidence for photolytic and microbial degradation processes in the dissipation of leptospermone, a natural β-triketone herbicide

  • Sana Romdhane
  • Marion Devers-Lamrani
  • Fabrice Martin-Laurent
  • Amani Ben Jrad
  • Delphine Raviglione
  • Marie-Virginie Salvia
  • Pascale Besse-Hoggan
  • Franck E. Dayan
  • Cédric Bertrand
  • Lise Barthelmebs
Chemistry, Activity and Impact of Plant Biocontrol products
  • 293 Downloads

Abstract

Bioherbicides appear as an ecofriendly alternative to synthetic herbicides, generally used for weed management, because they are supposed to have low side on human health and ecosystems. In this context, our work aims to study abiotic (i.e., photolysis) and biotic (i.e,. biodegradation) processes involved in the fate of leptospermone, a natural β-triketone herbicide, by combining chemical and microbiological approaches. Under controlled conditions, the photolysis of leptospermone was sensitive to pH. Leptospermone has a half-life of 72 h under simulated solar light irradiations. Several transformation products, including hydroxy-leptospermone, were identified. For the first time, a bacterial strain able to degrade leptospermone was isolated from an arable soil. Based on its 16S ribosomal RNA (rRNA) gene sequence, it was affiliated to the Methylophilus group and was accordingly named as Methylophilus sp. LS1. Interestingly, we report that the abundance of OTUs, similar to the 16S rRNA gene sequence of Methylophilus sp. LS1, was strongly increased in soil treated with leptospermone. The leptospermone was completely dissipated by this bacteria, with a half-life time of 6 days, allowing concomitantly its growth. Hydroxy-leptospermone was identified in the bacterial culture as a major transformation product, allowing us to propose a pathway of transformation of leptospermone including both abiotic and biotic processes.

Keywords

Bioherbicides Leptospermone Photodegradation Biodegradation Transformation products Methylophilus sp. LS1 

Notes

Acknowledgments

This work was supported by the “Agence National de la Recherche” under TRICETOX project, number ANR-13-CESA-0002. The authors would like to thank David Riboul (INPT, ENSIACET, Université de Toulouse) for helpful analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Awata H, Endo F, Matsuda I (1994) Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD). Genomics 23:534–539CrossRefGoogle Scholar
  2. Bardot C et al (2015) How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure. Environ Pollut 199:198–208CrossRefGoogle Scholar
  3. Bartley GE, Maxwell CA, Wittenbach VA, Scolnik PA (1997) Cloning of an Arabidopsis thaliana cDNA for p-hydroxyphenylpyruvate dioxygenase (Accession No. U89267)Google Scholar
  4. Beaudegnies R et al (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors-a review of the triketone chemistry story from a Syngenta perspective. Bioorg Med Chem 17:4134–4152CrossRefGoogle Scholar
  5. Bonnet JL, Bonnemoy F, Dusser M, Bohatier J (2008) Toxicity assessment of the herbicides sulcotrione and mesotrione toward two reference environmental microorganisms: Tetrahymena pyriformis and Vibrio fischeri. Arch Environ Contam Toxicol 55:576–583CrossRefGoogle Scholar
  6. Busse MD, Ratcliff AW, Shestak CJ, Powers RF (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol Biochem 33:1777–1789CrossRefGoogle Scholar
  7. Calvayrac C, Bontemps N, Nouga-Bissoue A, Romdhane S, Coste C-M, Cooper J-F (2013) Photolysis of tembotrione and its main by-products under extreme artificial conditions: comparison with another beta-triketone herbicide. Sci Total Environ 452:227–232CrossRefGoogle Scholar
  8. Calvayrac C et al (2012) Isolation and characterisation of a bacterial strain degrading the herbicide sulcotrione from an agricultural soil. Pest Manag Sci 68:340–347CrossRefGoogle Scholar
  9. Cantrell CL, Dayan FE, Duke SO (2012) Natural products as sources for new pesticides. J Nat Prod 75:1231–1242CrossRefGoogle Scholar
  10. Carles L, Besse-Hoggan P, Joly M, Vigouroux A, Morera S, Batisson I (2016) Functional and structural characterization of two Bacillus megaterium nitroreductases biotransforming the herbicide mesotrione. Biochem J 473:1443–1453CrossRefGoogle Scholar
  11. Chaabane H, Cooper JF, Azouzi L, Coste CM (2005) Influence of soil properties on the adsorption-desorption of sulcotrione and its hydrolysis metabolites on various soils. J Agric Food Chem 53:4091–4095CrossRefGoogle Scholar
  12. Chaabane H, Vulliet E, Joux F, Lantoine F, Conan P, Cooper J-F, Coste C-M (2007) Photodegradation of sulcotrione in various aquatic environments and toxicity of its photoproducts for some marine micro-organisms. Water Res 41:1781–1789CrossRefGoogle Scholar
  13. Chaabane H, Vulliet E, Calvayrac C, Coste C-M, Cooper J-F (2008) Behaviour of sulcotrione and mesotrione in two soils. Pest Manag Sci 64:86–93CrossRefGoogle Scholar
  14. Crouzet O et al (2010) Response of soil microbial communities to the herbicide mesotrione: a dose-effect microcosm approach. Soil Biol Biochem 42:193–202CrossRefGoogle Scholar
  15. Dayan FE, Duke SO, Sauldubois A, Singh N, McCurdy C, Cantrell C (2007) P-Hydroxyphenylpyruvate dioxygenase is a herbicidal target site for beta-triketones from Leptospermum scoparium. Phytochemistry 68:2004–2014CrossRefGoogle Scholar
  16. Dayan FE, Cantrell C, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034CrossRefGoogle Scholar
  17. Dayan FE, Howell JL, Marais JP, Ferreira D, Koivunen M (2011) Manuka oil, a natural herbicide with preemergence activity. Weed Sci 59:464–469CrossRefGoogle Scholar
  18. De Marco P, Pacheco CC, Figueiredo AR, Moradas-Ferreira P (2004) Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80CrossRefGoogle Scholar
  19. Denoya CD, Skinner DD, Morgenstern MR (1994) A streptomyces-avermitilis gene enconding a 4-ydroxypenlpyruvic acid dioxygenase-like protein that directs the production of homogentisic acid and an ochronotic pigment in Escherichia coli. J Bacteriol 176:5312–5319CrossRefGoogle Scholar
  20. Douglas MH, van Klink JW, Smallfield BM, Perry NB, Anderson RE, Johnstone P, Weavers RT (2004) Essential oils from New Zealand manuka: triketone and other chemotypes of Leptospermum scoparium. Phytochemistry 65:1255–1264CrossRefGoogle Scholar
  21. El Sebai T, Lagacherie B, Soulas G, Martin-Laurent F (2004) Isolation and characterisation of an isoproturon-mineralising Methylopila sp. TES from French agricultural soil. FEMS Microbiol Lett 239:103–110CrossRefGoogle Scholar
  22. Eyice O, Namura M, Chen Y, Mead A, Samavedam S, Schafer H (2015) SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J 9:2336–2348CrossRefGoogle Scholar
  23. Garcia I, Rodgers M, Lenne C, Rolland A, Sailland A, Matringe M (1997) Subcellular localization and purification of a p-hydroxyphenylpyruvate dioxygenase from cultured carrot cells and characterization of the corresponding cDNA. Biochem J 325:761–769CrossRefGoogle Scholar
  24. Gogleva AA, Kaparullina EN, DoroninaNina V, Ao TY (2010) Methylophilus flavus sp. nov. and Methylophilus luteus sp. nov., aerobic, methylotrophic bacteria associated with plants. Int J Syst Evol Microbiol 60:2623–2628CrossRefGoogle Scholar
  25. Gopal M, Gupta A, Arunachalam V, Magu SP (2007) Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresour Technol 98:3154–3158CrossRefGoogle Scholar
  26. Gürtler V1, and Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142:3-16CrossRefGoogle Scholar
  27. Gray R, Tseng C, Rusay R (1980) 1-Hydroxy-2-(alkylketo)-4,4,6,6-tetramethyl cyclohexen-3,5-dione herbicides. US Patent 4,202,840Google Scholar
  28. Hellyer RO (1968) The occurrence of β-triketones in the steam-volatile oils of some myrtaceous Australian plants. Aust J Chem 21:2825–2828CrossRefGoogle Scholar
  29. Joly P, Bonnemoy F, Charvy JC, Bohatier J, Mallet C (2013) Toxicity assessment of the maize herbicides S-metolachlor, benoxacor, mesotrione and nicosulfuron, and their corresponding commercial formulations, alone and in mixtures, using the Microtox® test. Chemosphere 93:2444–2450CrossRefGoogle Scholar
  30. Kök FN, Arıca MY, Halıcıgil C, Alaeddinoglu G, Hasırcı V (1999) Biodegradation of aldicarb in a packed-bed reactor by immobilized Methylosinus. Enzym Microb Technol 24:291–296CrossRefGoogle Scholar
  31. Lapidus A et al (2011) Genomes of three methylotrophs from a single niche reveal the genetic and metabolic divergence of the Methylophilaceae. J Bacteriol 193:3757–3764CrossRefGoogle Scholar
  32. Letunic I, Bork P (2007) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:W475–W478CrossRefGoogle Scholar
  33. Meazza G et al (2002) The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 60:281–288CrossRefGoogle Scholar
  34. Mitchell G, Bartlett DW, Fraser TEM, Hawkes TR, Holt DC, Townson JK, Wichert RA (2001) Mesotrione: a new selective herbicide for use in maize. Pest Manag Sci 57:120–128CrossRefGoogle Scholar
  35. Nagy I, Compernolle F, Ghys K, Vanderleyden J, De Mot R (1995) A single cytochrome P-450 system is involved in degradation of the herbicides EPTC (S-ethyl dipropylthiocarbamate) and atrazine by Rhodococcus sp. strain NI86/21. Appl Environ Microbiol 61:2056–2060Google Scholar
  36. O’Sullivan J, Van Acker R, Grohs R, Riddle R (2015) Improved herbicide efficacy for organically grown vegetables. Org Agr 4:315–322CrossRefGoogle Scholar
  37. Olchanheski LR et al (2014) Mechanisms of tolerance and high degradation capacity of the herbicide mesotrione by Escherichia coli strain DH5-α. Plos One 9. doi: 10.1371/journal.pone.0099960 CrossRefGoogle Scholar
  38. Owens DK, Nanayakkara NPD, Dayan FE (2013) In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism. J Chem Ecol 39:262–270CrossRefGoogle Scholar
  39. Patil C et al (2016) Environmental Metabolic Footprinting: a novel application to study the impact of a natural and a synthetic beta-triketone herbicide in soil. Sci Total Environ 566-567:552–558CrossRefGoogle Scholar
  40. Perriere G, Gouy M (1996) WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369CrossRefGoogle Scholar
  41. Piutti S et al (2003) Isolation and characterisation of Nocardioides sp. SP12, an atrazine-degrading bacterial strain possessing the gene trzN from bulk- and maize rhizosphere soil. FEMS Microbiol Lett 221:111–117CrossRefGoogle Scholar
  42. Rocaboy-Faquet E, Noguer T, Romdhane S, Bertrand C, Dayan FE, Barthelmebs L (2014) Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors. Appl Microbiol Biotechnol 98:7243–7252CrossRefGoogle Scholar
  43. Romdhane S et al (2016) Ecotoxicological impact of the bioherbicide leptospermone on the microbial community of two arable soils. Front Microbiol 7:775CrossRefGoogle Scholar
  44. Romdhane S et al (2015) Isolation and characterization of Bradyrhizobium sp. SR1 degrading two β-triketone herbicides. Environ Sci Pollut Res Int 23:4138–4148CrossRefGoogle Scholar
  45. Ros M, Goberna M, Moreno JL, Hernandez T, Garcia C, Insam H, Pascual JA (2006) Molecular and physiological bacterial diversity of a semi-arid soil contaminated with different levels of formulated atrazine. Appl Soil Ecol 34:93–102CrossRefGoogle Scholar
  46. Rousseaux S, Hartmann A, Soulas G (2001) Isolation and characterisation of new Gram-negative and Gram-positive atrazine degrading bacteria from different French soils. FEMS Microbiol Ecol 36:211–222CrossRefGoogle Scholar
  47. Ruetschi U, Dellsen A, Sahlin P, Stenman G, Rymo L, Lindstedt S (1993) Human 4-hydroxphenylpyruvate dioxygenase—primary structure and chromosomal localization of the gene. Eur J Biochem 213:1081–1089CrossRefGoogle Scholar
  48. Ruetschi U, Odelhoeg B, Lindstedt S, Barros-Soderling J, Persson B, Joernvall H (1992) Characterization of 4-hydroxyphenylpyruvate dioxygenase. Primary structure of the Pseudomonas gene. Eur J Biochem 205:459–466CrossRefGoogle Scholar
  49. Schulz A, Ort O, Beyer P, Kleinig H (1993) SC-0051, a 2-benzoyl-cyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett 318:162–166CrossRefGoogle Scholar
  50. Siehl DL et al (2014) Broad 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide tolerance in soybean with an optimized enzyme and expression cassette. Plant Physiol 166:1162–1176CrossRefGoogle Scholar
  51. Singh S, Gupta R, Kumari M, Sharma S (2015) Nontarget effects of chemical pesticides and biological pesticide on rhizospheric microbial community structure and function in Vigna radiata. Environ Sci Pollut Res 22:11290–11300CrossRefGoogle Scholar
  52. Ter Halle A, Richard C (2006) Simulated solar light irradiation of mesotrione in natural waters. Environ Sci Technol 40:3842–3847CrossRefGoogle Scholar
  53. Ter Halle A, Wiszniowski J, Richard C (2007) Phototransformation of pesticides on plant leaves: the case of sulcotrione. Commun Agric Appl Biol Sci 72:45–52Google Scholar
  54. Ter Halle A et al (2009) Photolysis of the herbicide sulcotrione: formation of a major photoproduct and its toxicity evaluation. Pest Manag Sci 65:14–18CrossRefGoogle Scholar
  55. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefGoogle Scholar
  56. Trivella A, Stawinoga M, Dayan FE, Cantrell CL, Mazellier P, Richard C (2015) Photolysis of natural beta-triketonic herbicides in water. Water Res 78:28–36CrossRefGoogle Scholar
  57. van Klink JW et al (2005) Triketones active against antibiotic-resistant bacteria: synthesis, structure-activity relationships, and mode of action. Bioorg Med Chem 13:6651–6662CrossRefGoogle Scholar
  58. Weaver MA, Krutz LJ, Zablotowicz RM, Reddy KN (2007) Effects of glyphosate on soil microbial communities and its Mississippi soil. Pest Manag Sci 63:388–393CrossRefGoogle Scholar
  59. Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479CrossRefGoogle Scholar
  60. Wiszniowski J, Halle AT, Richard C, Hitmi A, Ledoigt G (2009) Photodegradation product of sulcotrione and the physiological response of maize (Zea mays) and white mustard (Sinapis alba). Chemosphere 74:1224–1230CrossRefGoogle Scholar
  61. Wu N et al (2011) Effects of sulcotrione [2-(2-chloro-4-mesylbenzoyl)-cyclohexane-1,3-dione] on enzymes involved in tyrosine catabolism and the extent of the resulting tyrosinemia and its relationship with corneal lesions in rats. Pestic Biochem Physiol 99:162–169CrossRefGoogle Scholar
  62. Wyckoff EE, Pishko EJ, Kirkland TN, Cole GT (1995) Cloning and expression of a gene encoding a T-cell reactive protein from coccidioides immitis to 4-hydrophenylpyruvate dioxygenase ad the mammalian F antigen. Gene 161:107–111CrossRefGoogle Scholar
  63. Zhang S-y , Wang Q-f, Wan R, Xie S-g (2011) Changes in bacterial community of anthracene bioremediation in municipal solid waste composting soil. J Zhejiang Univ Sci B 12:760–768CrossRefGoogle Scholar
  64. Zwietering MH, Jongenburger I, Rombouts FM, Riet KV (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Sana Romdhane
    • 1
    • 2
    • 3
    • 4
  • Marion Devers-Lamrani
    • 3
  • Fabrice Martin-Laurent
    • 3
  • Amani Ben Jrad
    • 1
    • 2
  • Delphine Raviglione
    • 4
  • Marie-Virginie Salvia
    • 4
  • Pascale Besse-Hoggan
    • 5
  • Franck E. Dayan
    • 6
  • Cédric Bertrand
    • 4
  • Lise Barthelmebs
    • 1
    • 2
  1. 1.Univ. Perpignan Via Domitia, Biocapteurs-Analyses-EnvironnementPerpignanFrance
  2. 2.Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire OcéanologiqueBanyuls sur-MerFrance
  3. 3.AgroSup Dijon, INRA, Univ. Bourgogne-Franche-ComtéDijonFrance
  4. 4.Centre de Recherches Insulaires et Observatoire de l’Environnement, USR 3278 EPHE-Centre National de la Recherche Scientifique, Université Perpignan via DomitiaPerpignanFrance
  5. 5.Université Clermont Auvergne, CNRS, Sigma Clermont, Institut de Chimie de Clermont-Ferrand (ICCF)Clermont-FerrandFrance
  6. 6.Bioagricultural Sciences and Pest Management DepartmentColorado State UniversityFort CollinsUSA

Personalised recommendations