Environmental Science and Pollution Research

, Volume 24, Issue 25, pp 20616–20625 | Cite as

Elemental and isotopic determination of lead (Pb) in particulate matter in the Brazilian city of Goiânia (GO) using ICP-MS technique

  • Hendryk Gemeiner
  • Thiago de Araujo Dourado
  • Everton Tiago Sulato
  • Juliana Aparecida Galhardi
  • Ana Carla Fernandes Gomes
  • Eduardo de Almeida
  • Amauri Antonio MenegárioEmail author
  • Didier Gastmans
  • Chang Hung Kiang
Research Article


The toxic metal lead (Pb) can be harmful to human health in various manners, but is also considered as a distinguished tracer of environmental pollution since the relative abundance of its four stable isotopes with the atomic masses of 204, 206, 207, and 208 varies with the emission source. This study is focused on the Pb concentrations and isotope ratios in the particulate matter of the Brazilian city of Goiânia in order to determine the main Pb emission sources. Particulate matter samples were collected on clean Teflon filters during rainy and dry season in 2014 in the center of Goiânia city near main roads with a high traffic volume. Pb concentrations as well as stable Pb isotope ratios of the particulate matter samples were analyzed by inductively coupled plasma-mass spectrometry. To apply this analytical technique successfully, it was necessary to optimize parameters in case of acquisition time, detector dead time, and mass discrimination, which affect the measurement accuracy and precision. Results showed that Pb concentrations in Goiânia were different between rainy and dry season. Pb concentrations showed higher values and less variation in dry season than in rainy season. Pb isotope ratios demonstrated significant variations between dry and rainy season. An enrichment of 206Pb isotopes related to 207Pb and 208Pb isotopes was observed in dry season. However, the comparison of the obtained isotopic Pb signature with data of potential Pb sources from previous studies indicated that traffic-related sources should be considered as main Pb source in the particulate matter of Goiânia. These assumptions were incorporated by the calculation of the contribution factor of Pb coming from traffic-related sources by applying binary mixing equations.


Lead isotope ratios Particulate matter Industrial emissions Air pollution ICP-MS 



The authors thank the foundations of Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Fundação de Apoio a Pesquisa, Ensino e Extensão (Funep) for their financial support. Four anonymous reviewers are greatly thanked for helpful comments that improved the readability of the manuscript.


  1. Aberg G, Pacyna JM, Stray H, Skjelkvale BL (1999) The origin of atmospheric lead in Oslo, Norway, studied with the use of isotopic ratios. Atmos Environ 33:3335–3344. doi: 10.1016/S1352-2310(98)00392-6 CrossRefGoogle Scholar
  2. Aily C (2001) Caracterização isotópica de Pb na atmosfera: Um exemplo da cidade de São Paulo. Master thesis, University of São Paulo, 76 f. (accessed 17/07/2016)
  3. Alvarez HB, Echeverria RS, Alvarez PS, Krupa S (2013) Air quality standards for particulate matter (PM) at high altitude cities. Environ Pollut 173:255–256. doi: 10.1016/j.envpol.2012.09.025 CrossRefGoogle Scholar
  4. Babinski M, Aily C, Ruiz IR, Sato K (2003) Pb isotopic signatures of the atmosphere of the São Paulo city, Brazil. J Phys IV 107:87–90. doi: 10.1051/jp4:20030250
  5. Berglund M, Wieser ME (2011) Isotopic compositions of the elements 2009 (IUPAC Technical Report). Pure Appl Chem 83(2):397–410. doi: 10.1351/PAC-REP-10-06-02 CrossRefGoogle Scholar
  6. Bollhöfer A, Rosman KJR (2000) Isotopic source signatures for atmospheric lead: the Southern Hemisphere. Geochim Cosmochim Acta 64:3251–3260. doi: 10.1016/S0016-7037(00)00436-1 CrossRefGoogle Scholar
  7. Bollhöfer A, Rosman KJR (2001) Isotopic source signatures for atmospheric lead: the Northern Hemisphere. Geochim Cosmochim Acta 65:1727–1740. doi: 10.1016/S0016-7037(00)00630-X CrossRefGoogle Scholar
  8. Cimova N, Novak M, Chrastny V, Curik J, Veselovsky F, Blaha V, Prechova E, Pasava J, Houskova M, Bohdalkova L, Stepanova M, Mikova J, Krachler M, Komarek A (2016) Lead fluxes and 206Pb/207Pb isotope ratios in rime and snow collected at remote mountain-top locations (Czech Republic, Central Europe): patterns and sources. Atmos Environ 143:51–59. doi: 10.1016/j.atmosenv.2016.07.057 CrossRefGoogle Scholar
  9. Companhia Ambiental do Estado de São Paulo (CETESB) (2014) Diretoria de Engenharia e Qualidade Ambiental, Departamento de Qualidade Ambiental, Divisão de Qualidade do Ar, EQQA/EQQM/EQQT, Operação Inverno—2013, Qualidade Do Ar (accessed 07/09/2016)
  10. Dickin AP (1995) Radiogenic isotope geology. Cambridge University Press, CambridgeGoogle Scholar
  11. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. (accessed 14/07/2016)
  12. Gioia SMCL, Pimentel MM, Tessler M, Dantas EL, Campos JEG, Guimarães EM, Maruoka MTS, Nascimento ELC (2006) Sources of anthropogenic lead in sediments from an artificial lake in Brasilia, central Brazil. Sci Total Environ 356:125–142. doi: 10.1007/s11356-014-3696-8 CrossRefGoogle Scholar
  13. Grigoratos T, Martini G (2015) Brake wear particle emissions: a review. Environ Sci Pollut Res 22:2491–2504. doi: 10.1007/s11356-014-3696-8 CrossRefGoogle Scholar
  14. Instituto Brasileiro de Geografica e Estatística (IBGE) (2015) (accessed 07/08/2016)
  15. Komárek M, Ettler V, Chrastný V, Mihaljevič M (2008) Lead isotopes in environmental sciences: a review. Environ Intern 34:562–577. doi: 10.1016/j.envint.2007.10.005 CrossRefGoogle Scholar
  16. Kylander ME, Klaminder J, Bindler R, Weiss DJ (2010) Natural lead isotope variations in the atmosphere. Earth Planet Sci Lett 290:44–53CrossRefGoogle Scholar
  17. Lee P-K, Jo HY, Kang M-J, Kim S-O (2015) Seasonal variation in trace element concentrations and Pb isotopic composition of airborne particulates during Asian dust and non-Asian dust periods in Daejeon, Korea. Environ Earth Sci 74:3613–3628. doi: 10.1007/s12665-015-4425-4 CrossRefGoogle Scholar
  18. Lovei M (1998) Phasing out lead from gasoline: worldwide experience and policy implications. World Bank Technical Paper 397.
  19. Mastral AM, De La Cruz MT, Laborda F (2009) Study of Pb sources by Pb isotope ratios in the airborne PM10 of Zaragoza, Spain. J Environ Monit 11:2052–2057. doi: 10.1039/b912274e CrossRefGoogle Scholar
  20. Mirlean N, Robinson D, Kawashita K, Lidia V, Conceição R, Chemale F (2005) Identification of local sources of lead in atmospheric deposits in an urban area in southern Brazil using stable lead isotope ratios. Atmos Environ 39:6204–6212. doi: 10.1016/j.atmosenv.2005.07.002 CrossRefGoogle Scholar
  21. Monna F, Lancelot J, Croudace IW, Cundy AB, Lewis JT (1997) Lead isotopic composition of airborne material from France and the southern U.K. implications for Pb pollution sources in urban areas. Environ Sci Technol 31:2277–2286. doi: 10.1021/es960870+ CrossRefGoogle Scholar
  22. Mukai H, Furuta N, Fujii T, Ambe Y, Sakamoto K, Hashimoto Y (1993) Characterization of sources of lead in the urban air of Asia using ratios of stable lead isotopes. Environ Sci Technol 27:1347–1356. doi: 10.1021/es00044a009 CrossRefGoogle Scholar
  23. Nelms S, Quétel C, Prohaska T, Vogl J, Taylor P (2001) Evaluation of detector dead time calculation models for ICP-MS. J Anal At Spectrom 16:333–338. doi: 10.1039/B007913H CrossRefGoogle Scholar
  24. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139. doi: 10.1038/333134a0 CrossRefGoogle Scholar
  25. OECD (1993) Risk reduction monograph no. 11: lead. Background and national experience with reducing risk. Environment Directorate, Organisation for Economic Cooperation and Development, Report OCDE/GD (93) 67, ParisGoogle Scholar
  26. Pope CA, Dockery DW, Schwartz J (1995) Review of epidemiological evidence of health effects of particulate air pollution. Inhal Toxicol 7:1–18. doi: 10.3109/08958379509014267 CrossRefGoogle Scholar
  27. Salcedo D, Castro T, Bernal JP, Almanza-Veloz V, Zavala M, González-Castillo E, Saavedra MI, Perez-Arvízu O, Díaz-Trujillo GC, Molina LT (2016) Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico. Atmos Environ 132:171–178. doi: 10.1016/j.atmosenv.2016.02.041 CrossRefGoogle Scholar
  28. Schwartz J, Dockery DW, Neas LM (1996) Is daily mortality associated specifically with fine particles? J Air Waste Manag Assoc 46:927–939. doi: 10.1080/10473289.1996.10467528 CrossRefGoogle Scholar
  29. Shotyk W, Kempter H, Krachler M, Zaccone C (2015) Stable (206Pb, 207Pb, 208Pb) and radioactive (210Pb) lead isotopes in 1 year of growth of sphagnum moss from four ombrotrophic bogs in southern Germany: geochemical significance and environmental implications. Geochim Cosmochim Acta 163:101–125. doi: 10.1016/j.gca.2015.04.026 CrossRefGoogle Scholar
  30. Souza de Lima C (2010) Determinação da Composição Isotópica de Chumbo e Estrôncio em Petróleo e Derivados. Master thesis, Federal University of Pará, Belém.
  31. United States Environmental Protection Agency (1999) Selection, Preparation and Extraction of Filter Material. Compendium Method IO-3.1. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. Center for Environmental Research Information, Office of Research and Development. (accessed 07/08/2016)
  32. United States Environmental Protection Agency (2016) Review of the National Ambient Air Quality Standards for Lead, Federal Register Rules and Regulations, 18 October 2016, Vol. 81, No. 201, pp. 71906–71942.
  33. Veron A, Flament P, Bertho ML, Alleman L, Flegal R, Hamelin B (1999) Isotopic evidence of pollutant lead sources in northwestern France. Atmos Environ 33:3377–3388. doi: 10.1016/S1352-2310(98)00376-8 CrossRefGoogle Scholar
  34. Wang SQ, Zhang JL (2006) Blood lead levels in children, China. Environ Res 101:412–418. doi: 10.1016/j.envres.2005.11.007 CrossRefGoogle Scholar
  35. Xu JJ, Cao KF, Hoa H, Ding YM (2011) Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China. Atmos Environ 46:217–224. doi: 10.1016/j.atmosenv.2011.09.078 CrossRefGoogle Scholar
  36. Zheng J, Tan M, Shibata Y, Tanaka A, Li Y (2004) Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmos Environ 38:1191–1200. doi: 10.1016/j.atmosenv.2003.11.004 CrossRefGoogle Scholar
  37. Zhi Y, Guo T, Shi J, Zeng L, Wu L (2016) Expressing lead isotopic compositions by fractional abundances for environmental source apportionment. Environ Pollut 218:446–452. doi: 10.1016/j.envpol.2016.07.024 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Hendryk Gemeiner
    • 1
  • Thiago de Araujo Dourado
    • 1
  • Everton Tiago Sulato
    • 1
  • Juliana Aparecida Galhardi
    • 1
  • Ana Carla Fernandes Gomes
    • 2
  • Eduardo de Almeida
    • 3
  • Amauri Antonio Menegário
    • 1
    Email author
  • Didier Gastmans
    • 1
  • Chang Hung Kiang
    • 1
    • 4
  1. 1.Centro de Estudos AmbientaisUniversidade Estadual Paulista (Unesp)Rio ClaroBrazil
  2. 2.Ciência e Tecnologia de GoiásInstituto Federal de EducaçãoGoiâniaBrazil
  3. 3.Centro de Energia Nuclear na AgriculturaUniversidade de São PauloPiracicabaBrazil
  4. 4.Instituto de Geociências e Ciências ExatasUniversidade Estadual Paulista (Unesp)Rio ClaroBrazil

Personalised recommendations