Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16481–16492 | Cite as

A delayed proinflammatory response of human preadipocytes to PCB126 is dependent on the aryl hydrocarbon receptor

  • Francoise A. Gourronc
  • Larry W. Robertson
  • Aloysius J. KlingelhutzEmail author
PCBs Risk Evaluation and Environmental Protection

Abstract

Inflammation in adipose tissue is recognized as a causative factor in the development of type II diabetes. Adipocyte hypertrophy as well as bacterial and environmental factors have been implicated in causing inflammation in mature adipocytes. Exposure to persistent organic pollutants such as polychlorinated biphenyls (PCBs) has been associated with the development of type II diabetes. We show here that PCB126, a dioxin-like PCB, activates a robust proinflammatory state in fat cell precursors (preadipocytes). The response was found to be dependent on aryl hydrocarbon receptor (AhR) activation, although induction of the response was delayed compared to upregulation of CYP1A1, a classic AhR-responsive gene. Treatment of preadipocytes with a nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) inhibitor partially attenuated the PCB126-induced inflammatory response and partly, but not completely, ameliorated disruption of adipogenesis caused by PCB126. Our results indicate a role for PCB126 in mediating an inflammatory response through AhR in preadipocytes that interferes with adipogenesis.

Keywords

Adipocytes Preadipocytes Fat PCB Inflammation Diabetes AhR 

Notes

Acknowledgements

We thank Dr. Patrick Ten Eyck at the Institute for Clinical and Translational Science, University of Iowa, for the statistical analysis. We also thank Hans Joachim-Lehmler of the University of Iowa Superfund Synthesis Core for supplying PCB126, Anna Chaly for the technical support, and Gopi Gadupudi for the advice.

Compliance with ethical standards

Funding information

This work was supported by a seed grant from the University of Iowa Center for Health Effects of Environmental Contamination (CHEEC), a pilot grant from the University of Iowa Environmental Health Sciences Research Center (grant number P30 ES05605), and a Fraternal Order of Eagles Diabetes Research Center Award given to AJK and the Iowa Superfund Research Program (grant number P42 ES 013661) awarded to LWR.

Supplementary material

11356_2017_9676_MOESM1_ESM.docx (15 kb)
Table S1 (DOCX 14 kb)

References

  1. Alexander DL, Ganem LG, Fernandez-Salguero P, Gonzalez F, Jefcoate CR (1998) Aryl-hydrocarbon receptor is an inhibitory regulator of lipid synthesis and of commitment to adipogenesis. J Cell Sci 111(Pt 22):3311–3322Google Scholar
  2. Ampleman MD, Martinez A, DeWall J, Rawn DF, Hornbuckle KC, Thorne PS (2015) Inhalation and dietary exposure to PCBs in urban and rural cohorts via congener-specific measurements. Environ Sci Technol 49:1156–1164CrossRefGoogle Scholar
  3. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA (2008) Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect 116:761–768CrossRefGoogle Scholar
  4. Baker NA, Karounos M, English V, Fang J, Wei Y, Stromberg A, Sunkara M, Morris AJ, Swanson HI, Cassis LA (2013) Coplanar polychlorinated biphenyls impair glucose homeostasis in lean C57BL/6 mice and mitigate beneficial effects of weight loss on glucose homeostasis in obese mice. Environ Health Perspect 121:105–110CrossRefGoogle Scholar
  5. Baker NA, Shoemaker R, English V, Larian N, Sunkara M, Morris AJ, Walker M, Yiannikouris F, Cassis LA (2015) Effects of adipocyte aryl hydrocarbon receptor deficiency on PCB-induced disruption of glucose homeostasis in lean and obese mice. Environ Health Perspect 123:944–950CrossRefGoogle Scholar
  6. Beyer A, Biziuk M (2009) Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol 201:137–158Google Scholar
  7. Brodie AE, Azarenko VA, Hu CY (1996a) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibition of fat cell differentiation. Toxicol Lett 84:55–59CrossRefGoogle Scholar
  8. Brodie AE, Manning VA, Hu CY (1996b) Inhibitors of preadipocyte differentiation induce COUP-TF binding to a PPAR/RXR binding sequence. Biochem Biophys Res Commun 228:655–661CrossRefGoogle Scholar
  9. Chao LC, Bensinger SJ, Villanueva CJ, Wroblewski K, Tontonoz P (2008) Inhibition of adipocyte differentiation by Nur77, Nurr1, and Nor1. Mol Endocrinol 22:2596–2608CrossRefGoogle Scholar
  10. Chen G, Bunce NJ (2004) Interaction between halogenated aromatic compounds in the Ah receptor signal transduction pathway. Environ Toxicol 19:480–489CrossRefGoogle Scholar
  11. Cho YC, Jefcoate CR (2004) PPARgamma1 synthesis and adipogenesis in C3H10T1/2 cells depends on S-phase progression, but does not require mitotic clonal expansion. J Cell Biochem 91:336–353CrossRefGoogle Scholar
  12. Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK (2006) Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 147:5340–5351CrossRefGoogle Scholar
  13. Cimafranca MA, Hanlon PR, Jefcoate CR (2004) TCDD administration after the pro-adipogenic differentiation stimulus inhibits PPARgamma through a MEK-dependent process but less effectively suppresses adipogenesis. Toxicol Appl Pharmacol 196:156–168CrossRefGoogle Scholar
  14. Dunmore SJ, Brown JE (2013) The role of adipokines in beta-cell failure of type 2 diabetes. J Endocrinol 216:T37–T45CrossRefGoogle Scholar
  15. Esser C, Rannug A (2015) The aryl hydrocarbon receptor in barrier organ physiology, immunology, and toxicology. Pharmacol Rev 67:259–279CrossRefGoogle Scholar
  16. Everett CJ, Thompson OM (2012) Associations of dioxins, furans and dioxin-like PCBs with diabetes and pre-diabetes: is the toxic equivalency approach useful? Environ Res 118:107–111CrossRefGoogle Scholar
  17. Everett CJ, Frithsen I, Player M (2011) Relationship of polychlorinated biphenyls with type 2 diabetes and hypertension. J Environ Monit 13:241–251CrossRefGoogle Scholar
  18. Fisman EZ, Tenenbaum A (2014) Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol 13:103CrossRefGoogle Scholar
  19. Fuentes E, Fuentes F, Vilahur G, Badimon L, Palomo I (2013) Mechanisms of chronic state of inflammation as mediators that link obese adipose tissue and metabolic syndrome. Mediat Inflamm 2013:136584CrossRefGoogle Scholar
  20. Gadupudi G, Gourronc FA, Ludewig G, Robertson LW, Klingelhutz AJ (2015) PCB126 inhibits adipogenesis of human preadipocytes. Toxicol in Vitro 29:132–141CrossRefGoogle Scholar
  21. Gadupudi GS, Klaren WD, Olivier AK, Klingelhutz AJ, Robertson LW (2016a) PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci 149:98–110CrossRefGoogle Scholar
  22. Gadupudi GS, Klingelhutz AJ, Robertson LW (2016b) Diminished phosphorylation of CREB is a key event in the dysregulation of gluconeogenesis and glycogenolysis in PCB126 hepatotoxicity. Chem Res Toxicol 29:1504–1509CrossRefGoogle Scholar
  23. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377CrossRefGoogle Scholar
  24. Gustafson B, Gogg S, Hedjazifar S, Jenndahl L, Hammarstedt A, Smith U (2009) Inflammation and impaired adipogenesis in hypertrophic obesity in man. Am J Physiol Endocrinol Metab 297:E999–E1003CrossRefGoogle Scholar
  25. Hanlon PR, Ganem LG, Cho YC, Yamamoto M, Jefcoate CR (2003) AhR- and ERK-dependent pathways function synergistically to mediate 2,3,7,8-tetrachlorodibenzo-p-dioxin suppression of peroxisome proliferator-activated receptor-gamma1 expression and subsequent adipocyte differentiation. Toxicol Appl Pharmacol 189:11–27CrossRefGoogle Scholar
  26. Hanlon PR, Zheng W, Ko AY, Jefcoate CR (2005) Identification of novel TCDD-regulated genes by microarray analysis. Toxicol Appl Pharmacol 202:215–228CrossRefGoogle Scholar
  27. Hectors TL, Vanparys C, Van Gaal LF, Jorens PG, Covaci A, Blust R (2013) Insulin resistance and environmental pollutants: experimental evidence and future perspectives. Environ Health Perspect 121:1273–1281CrossRefGoogle Scholar
  28. Hennig B, Meerarani P, Slim R, Toborek M, Daugherty A, Silverstone AE, Robertson LW (2002) Proinflammatory properties of coplanar PCBs: in vitro and in vivo evidence. Toxicol Appl Pharmacol 181:174–183CrossRefGoogle Scholar
  29. Herrick RF, Meeker JD, Altshul L (2011) Serum PCB levels and congener profiles among teachers in PCB-containing schools: a pilot study. Environ Health 10:56CrossRefGoogle Scholar
  30. Hoch M, Eberle AN, Peterli R, Peters T, Seboek D, Keller U, Muller B, Linscheid P (2008) LPS induces interleukin-6 and interleukin-8 but not tumor necrosis factor-alpha in human adipocytes. Cytokine 41:29–37CrossRefGoogle Scholar
  31. Hsu HF, Tsou TC, Chao HR, Kuo YT, Tsai FY, Yeh SC (2010) Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on adipogenic differentiation and insulin-induced glucose uptake in 3T3-L1 cells. J Hazard Mater 182:649–655CrossRefGoogle Scholar
  32. Hubbard TD, Murray IA, Perdew GH (2015) Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos 43:1522–1535CrossRefGoogle Scholar
  33. Imbeault P, Findlay CS, Robidoux MA, Haman F, Blais JM, Tremblay A, Springthorpe S, Pal S, Seabert T, Krummel EM, Maal-Bared R, Tetro JA, Pandey S, Sattar SA, Filion LG (2012) Dysregulation of cytokine response in Canadian First Nations communities: is there an association with persistent organic pollutant levels? PLoS One 7:e39931CrossRefGoogle Scholar
  34. James MA, Lee JH, Klingelhutz AJ (2006) Human papillomavirus type 16 E6 activates NF-kappaB, induces cIAP-2 expression, and protects against apoptosis in a PDZ binding motif-dependent manner. J Virol 80:5301–5307CrossRefGoogle Scholar
  35. Jin UH, Lee SO, Sridharan G, Lee K, Davidson LA, Jayaraman A, Chapkin RS, Alaniz R, Safe S (2014) Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol 85:777–788CrossRefGoogle Scholar
  36. Kern PA, Dicker-Brown A, Said ST, Kennedy R, Fonseca VA (2002) The stimulation of tumor necrosis factor and inhibition of glucose transport and lipoprotein lipase in adipose cells by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Metabolism 51:65–68CrossRefGoogle Scholar
  37. Kim S, Dere E, Burgoon LD, Chang CC, Zacharewski TR (2009) Comparative analysis of AhR-mediated TCDD-elicited gene expression in human liver adult stem cells. Toxicol Sci 112:229–244CrossRefGoogle Scholar
  38. Kim MJ, Pelloux V, Guyot E, Tordjman J, Bui LC, Chevallier A, Forest C, Benelli C, Clement K, Barouki R (2012) Inflammatory pathway genes belong to major targets of persistent organic pollutants in adipose cells. Environ Health Perspect 120:508–514CrossRefGoogle Scholar
  39. Kim KS, Lee YM, Kim SG, Lee IK, Lee HJ, Kim JH, Kim J, Moon HB, Jacobs DR Jr, Lee DH (2014) Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance. Chemosphere 94:151–157CrossRefGoogle Scholar
  40. Kohlgruber A, Lynch L (2015) Adipose tissue inflammation in the pathogenesis of type 2 diabetes. Curr Diab Rep 15:92CrossRefGoogle Scholar
  41. Labrecque MP, Prefontaine GG, Beischlag TV (2013) The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces. Curr Mol Med 13:1047–1065CrossRefGoogle Scholar
  42. Lee DH, Steffes MW, Sjodin A, Jones RS, Needham LL, Jacobs DR Jr (2011) Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes. PLoS One 6:e15977CrossRefGoogle Scholar
  43. Lee YM, Kim KS, Kim SA, Hong NS, Lee SJ, Lee DH (2014) Prospective associations between persistent organic pollutants and metabolic syndrome: a nested case-control study. Sci Total Environ 496:219–225CrossRefGoogle Scholar
  44. Li W, Matsumura F (2008) Significance of the nongenomic, inflammatory pathway in mediating the toxic action of TCDD to induce rapid and long-term cellular responses in 3T3-L1 adipocytes. Biochemistry 47:13997–14008CrossRefGoogle Scholar
  45. Li W, Vogel CF, Fujiyoshi P, Matsumura F (2008) Development of a human adipocyte model derived from human mesenchymal stem cells (hMSC) as a tool for toxicological studies on the action of TCDD. Biol Chem 389:169–177CrossRefGoogle Scholar
  46. Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL (2016) Suppression of resting metabolism by the angiotensin AT2 receptor. Cell Rep 16:1548–1560CrossRefGoogle Scholar
  47. Liu PC, Phillips MA, Matsumura F (1996) Alteration by 2,3,7,8-tetrachlorodibenzo-p-dioxin of CCAAT/enhancer binding protein correlates with suppression of adipocyte differentiation in 3T3-L1 cells. Mol Pharmacol 49:989–997Google Scholar
  48. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  49. Lo R, Matthews J (2012) High-resolution genome-wide mapping of AHR and ARNT binding sites by ChIP-Seq. Toxicol Sci 130:349–361CrossRefGoogle Scholar
  50. Meijer K, de Vries M, Al-Lahham S, Bruinenberg M, Weening D, Dijkstra M, Kloosterhuis N, van der Leij RJ, van der Want H, Kroesen BJ, Vonk R, Rezaee F (2011) Human primary adipocytes exhibit immune cell function: adipocytes prime inflammation independent of macrophages. PLoS One 6:e17154CrossRefGoogle Scholar
  51. Mlinar B, Marc J (2011) New insights into adipose tissue dysfunction in insulin resistance. Clin Chem Lab Med 49:1925–1935CrossRefGoogle Scholar
  52. Mori N, Yamada Y, Ikeda S, Yamasaki Y, Tsukasaki K, Tanaka Y, Tomonaga M, Yamamoto N, Fujii M (2002) Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100:1828–1834CrossRefGoogle Scholar
  53. Olsen H, Enan E, Matsumura F (1998) 2,3,7,8-Tetrachlorodibenzo-p-dioxin mechanism of action to reduce lipoprotein lipase activity in the 3T3-L1 preadipocyte cell line. J Biochem Mol Toxicol 12:29–39CrossRefGoogle Scholar
  54. Ovrevik J, Lag M, Lecureur V, Gilot D, Lagadic-Gossmann D, Refsnes M, Schwarze PE, Skuland T, Becher R, Holme JA (2014) AhR and Arnt differentially regulate NF-kappaB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal 12:48CrossRefGoogle Scholar
  55. Patel P, Abate N (2013a) Body fat distribution and insulin resistance. Nutrients 5:2019–2027CrossRefGoogle Scholar
  56. Patel P, Abate N (2013b) Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes 2013:489187Google Scholar
  57. Persky V, Piorkowski J, Turyk M, Freels S, Chatterton R Jr, Dimos J, Bradlow HL, Chary LK, Burse V, Unterman T, Sepkovic D, McCann K (2011) Associations of polychlorinated biphenyl exposure and endogenous hormones with diabetes in post-menopausal women previously employed at a capacitor manufacturing plant. Environ Res 111:817–824CrossRefGoogle Scholar
  58. Phillips M, Enan E, Liu PC, Matsumura F (1995) Inhibition of 3T3-L1 adipose differentiation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Cell Sci 108(Pt 1):395–402Google Scholar
  59. Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336:25–37CrossRefGoogle Scholar
  60. Prentki M, Madiraju SR (2012) Glycerolipid/free fatty acid cycle and islet beta-cell function in health, obesity and diabetes. Mol Cell Endocrinol 353:88–100CrossRefGoogle Scholar
  61. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44CrossRefGoogle Scholar
  62. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Froyland L (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471CrossRefGoogle Scholar
  63. Sartor MA, Schnekenburger M, Marlowe JL, Reichard JF, Wang Y, Fan Y, Ma C, Karyala S, Halbleib D, Liu X, Medvedovic M, Puga A (2009) Genomewide analysis of aryl hydrocarbon receptor binding targets reveals an extensive array of gene clusters that control morphogenetic and developmental programs. Environ Health Perspect 117:1139–1146CrossRefGoogle Scholar
  64. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, Matsumoto K, Kato S (2003) Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5:224–230CrossRefGoogle Scholar
  65. Tanabe K, Liu Y, Hasan SD, Martinez SC, Cras-Meneur C, Welling CM, Bernal-Mizrachi E, Tanizawa Y, Rhodes CJ, Zmuda E, Hai T, Abumrad NA, Permutt MA (2011) Glucose and fatty acids synergize to promote B-cell apoptosis through activation of glycogen synthase kinase 3beta independent of JNK activation. PLoS One 6:e18146CrossRefGoogle Scholar
  66. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H, Khosla S, Jensen MD, Kirkland JL (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9:667–684CrossRefGoogle Scholar
  67. Tian Y (2009) Ah receptor and NF-kappaB interplay on the stage of epigenome. Biochem Pharmacol 77:670–680CrossRefGoogle Scholar
  68. Vogel CF, Li W, Wu D, Miller JK, Sweeney C, Lazennec G, Fujisawa Y, Matsumura F (2011) Interaction of aryl hydrocarbon receptor and NF-kappaB subunit RelB in breast cancer is associated with interleukin-8 overexpression. Arch Biochem Biophys 512:78–86CrossRefGoogle Scholar
  69. Vogel CF, Khan EM, Leung PS, Gershwin ME, Chang WL, Wu D, Haarmann-Stemmann T, Hoffmann A, Denison MS (2014) Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J Biol Chem 289:1866–1875CrossRefGoogle Scholar
  70. Vu BG, Gourronc FA, Bernlohr DA, Schlievert PM, Klingelhutz AJ (2013) Staphylococcal superantigens stimulate immortalized human adipocytes to produce chemokines. PLoS One 8:e77988CrossRefGoogle Scholar
  71. Vu BG, Stach CS, Kulhankova K, Salgado-Pabon W, Klingelhutz AJ, Schlievert PM (2015) Chronic superantigen exposure induces systemic inflammation, elevated bloodstream endotoxin, and abnormal glucose tolerance in rabbits: possible role in diabetes. MBio 6:e02554CrossRefGoogle Scholar
  72. Wang X, Wang X, Varma RK, Beauchamp L, Magdaleno S, Sendera TJ (2009) Selection of hyperfunctional siRNAs with improved potency and specificity. Nucleic Acids Res 37:e152CrossRefGoogle Scholar
  73. Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado-Lopez F, Wang ZV, Scherer PE (2014) Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20:103–118CrossRefGoogle Scholar
  74. Westin ER, Aykin-Burns N, Buckingham EM, Spitz DR, Goldman FD, Klingelhutz AJ (2011) The p53/p21(WAF/CIP) pathway mediates oxidative stress and senescence in dyskeratosis congenita cells with telomerase insufficiency. Antioxid Redox Signal 14:985–997CrossRefGoogle Scholar
  75. Wree A, Kahraman A, Gerken G, Canbay A (2011) Obesity affects the liver—the link between adipocytes and hepatocytes. Digestion 83:124–133CrossRefGoogle Scholar
  76. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830CrossRefGoogle Scholar
  77. Ye R, Scherer PE (2013) Adiponectin, driver or passenger on the road to insulin sensitivity? Mol Metab 2:133–141CrossRefGoogle Scholar
  78. Zhang Y, Xie L, Gunasekar SK, Tong D, Mishra A, Gibson WJ, Wang C, Fidler T, Marthaler B, Klingelhutz A, Dale Abel E, Samuel I, Smith JK, Cao L, Sah R (2017) SWELL1 is a regulator of adipocyte size, insulin signalling and glucose homeostasis. Nat Cell Biol 19:504–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Francoise A. Gourronc
    • 1
  • Larry W. Robertson
    • 2
  • Aloysius J. Klingelhutz
    • 1
    • 3
    Email author
  1. 1.Department of Microbiology and Immunology, Carver College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Department of Occupational and Environmental Health, College of Public HealthUniversity of IowaIowa CityUSA
  3. 3.Department of Microbiology and Immunology, Carver College of MedicineThe University of IowaIowa CityUSA

Personalised recommendations