Skip to main content

Comparative toxicity of seven rare earth elements in sea urchin early life stages


The widespread use of rare earth elements (REEs) in a number of technological applications raises unanswered questions related to REE-associated adverse effects. We have previously reported on the multiple impact of some REEs on the early life stages of the sea urchin Paracentrotus lividus. The present investigation was to evaluate REE toxicity to early life stages in two unrelated sea urchin species, Sphaerechinus granularis and Arbacia lixula. The comparative toxicities were tested of seven REEs, namely yttrium, lanthanum, cerium, neodymium, samarium, europium and gadolinium as chloride salts at concentrations ranging from 10−7 to 10−4 M. The evaluated endpoints included developmental defects and cytogenetic anomalies in REE-exposed embryos/larvae, and decreased fertilization success and offspring damage following sperm exposure. The results showed different toxicity patterns for individual REEs that varied according to test species and to treatment protocol, thus showing toxicity scaling for the different REEs. Further, the observed effects were compared with those reported for P. lividus either following embryo or sperm exposures. S. granularis showed a significantly higher sensitivity both compared to A. lixula and to P. lividus. This study provides clear-cut evidence for distinct toxicity patterns among a series of REEs. The differences in species sensitivity at micromolar REE levels may warrant investigations on species susceptibility to impacts along polluted coasts.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Bleiwas DI, Gambogi J (2013) Preliminary estimates of the quantities of rare-earth elements contained in selected products and in imports of semimanufactured products to the United States, 2010. Open-File Report 2013–1072. U.S. Department of the Interior; U.S. Geological Survey

  • Burić P, Jakšić Ž, Štajner L, Dutour Sikirić M, Jurašin D, Cascio C, Calzolai L, Lyons DM (2015) Effect of silver nanoparticles on Mediterranean sea urchin embryonal development is species specific and depends on moment of first exposure. Mar Environ Res 111:50–59. doi:10.1016/j.marenvres.2015.06.015

    Article  Google Scholar 

  • Bustamante P, Miramand P (2005) Subcellular and body distributions of 17 trace elements in the variegated scallop Chlamys varia from the French coast of the Bay of Biscay. Sci Total Environ 337:59–73. doi:10.1016/j.scitotenv.2004.07.004

    Article  CAS  Google Scholar 

  • Carballeira C, Martín-Díaz L, Delvalls TA (2011) Influence of salinity on fertilization and larval development toxicity tests with two species of sea urchin. Mar Environ Res 72:196–203. doi:10.1016/j.marenvres.2011.08.008

    Article  CAS  Google Scholar 

  • Carballeira C, De Orte MR, Viana IG, Delvalls TA, Carballeira A (2012) Assessing the toxicity of chemical compounds associated with land-based marine fish farms: the sea urchin embryo bioassay with Paracentrotus lividus and Arbacia lixula. Arch Environ Contam Toxicol 63:249–261. doi:10.1007/s00244-012-9769-0

    Article  CAS  Google Scholar 

  • Carpenter D, Boutin C, Allison JE, Parsons JL, Ellis DM (2015) Uptake and effects of six rare earth elements (REEs) on selected native and crop species growing in contaminated soils. PLoS One 10(6):e0129936. doi:10.1371/journal.pone.0129936

    Article  Google Scholar 

  • Cipollaro M, Corsale G, Esposito A, Ragucci E, Staiano N, Giordano GG, Pagano G (1986) Sub-lethal pH decrease may cause genetic damage to eukaryotic cell. A study on sea urchins and Salmonella typhimurium. Teratog Carcinog Mutagen 6:275–288. doi:10.1002/tcm.1770060404

    Article  CAS  Google Scholar 

  • Cui J, Zhang Z, Bai W, Zhang L, He X, Ma Y, Liu Y, Chai Z (2012) Effects of rare earth elements La and Yb on the morphological and functional development of zebrafish embryos. J Environ Sci 24:209–213. doi:10.1016/S1001-0742(11)60755-9

    Article  CAS  Google Scholar 

  • De Nicola E, Meriç S, Gallo M, Iaccarino M, Della Rocca C, Lofrano G, Russo T, Pagano G (2007) Vegetable and synthetic tannins induce hormesis/toxicity effects in sea urchin early development and in algal growth. Environ Pollut 146:46–54. doi:10.1016/j.envpol.2006.06.018

    Article  Google Scholar 

  • Feyerabend F, Fischer J, Holtz J, Witte F, Willumeit R, Drücker H, Vogt C, Hort N (2010) Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines. Acta Biomater 6:1834–1842. doi:10.1016/j.actbio.2009.09.024

    Article  CAS  Google Scholar 

  • Franus W, Wiatros-Motyka MM, Wdowin M (2015) Coal fly ash as a resource for rare earth elements. Environ Sci Pollut Res Int 22:9464–9474. doi:10.1007/s11356-015-4111-9

    Article  CAS  Google Scholar 

  • Gambogi J, Cordier DJ (2013) Rare earths, in Metals and Minerals. U.S. Geological Survey.

  • González V, Vignati DAL, Leyval C, Giamberini L (2014) Environmental fate and ecotoxicity of lanthanides: are they a uniform group beyond chemistry? Environ Int 71:148–157. doi:10.1016/j.envint.2014.06.019

    Article  Google Scholar 

  • González V, Vignati DA, Pons MN, Montarges-Pelletier E, Bojic C, Giamberini L (2015) Lanthanide ecotoxicity: first attempt to measure environmental risk for aquatic organisms. Environ Pollut 199:139–147. doi:10.1016/j.envpol.2015.01.020

    Article  Google Scholar 

  • Huang P, Li J, Zhang S, Chen C, Han Y, Liu N, Xiao Y, Wang H, Zhang M, Yu Q, Liu Y, Wang W (2011) Effects of lanthanum, cerium, and neodymium on the nuclei and mitochondria of hepatocytes: accumulation and oxidative damage. Environ Toxicol Pharmacol 31:25–32. doi:10.1016/j.etap.2010.09.001

    Article  CAS  Google Scholar 

  • Karadağ MM, Küpeli Ş, Arýk F, Ayhan A, Zedef V, Döyen A (2009) Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya –Southern Turkey). Chem Erde - Geochem 69:143–159. doi:10.1016/j.chemer.2008.04.005Lewis

    Article  Google Scholar 

  • Lewis C, Ellis RP, Vernon E, Elliot K, Newbatt S, Wilson RW (2016) Ocean acidification increases copper toxicity differentially in two key marine invertebrates with distinct acid-base responses. Sci Rep 6:21554. doi:10.1038/srep21554

    Article  CAS  Google Scholar 

  • Li Y, Yu H, Zheng S, Miao Y, Yin S, Peng Li P, Bian Y (2016) Direct quantification of rare earth elements concentrations in urine of workers manufacturing cerium, lanthanum oxide ultrafine and nanoparticles by a developed and validated ICP-MS. Int J Environ Res Public Health 13:350. doi:10.3390/ijerph13030350

    Article  Google Scholar 

  • Liu H, Wang J, Yang Z, Wang K (2015) Serum proteomic analysis based on iTRAQ in miners exposed to soil containing rare earth elements. Biol Trace Elem Res 167:200–208. doi:10.1007/s12011-015-0312-9

    Article  CAS  Google Scholar 

  • Martino C, Bonaventura R, Byrne M, Roccheri M, Matranga V (2016) Effects of exposure to gadolinium on the development of geographically and phylogenetically distant sea urchins species. Mar Environ Res S0141-1136(16):30098–30098. doi:10.1016/j.marenvres.2016.06.001

    Google Scholar 

  • Nakamura Y, Tsumura Y, Tonogai Y, Shibata T, Ito Y (1997) Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol 37:106–116. doi:10.1006/faat.1997.2322

    Article  CAS  Google Scholar 

  • Oral R, Bustamante P, Warnau M, D’Ambra A, Guida M, Pagano G (2010) Cytogenetic and developmental toxicity of cerium and lanthanum to sea urchin embryos. Chemosphere 81:194–198. doi:10.1016/j.chemosphere.2010.06.057

    Article  CAS  Google Scholar 

  • Pagano G, Esposito A, Bove P, de Angelis M, Rota A, Giordano GG (1983) The effects of hexavalent and trivalent chromium on fertilization and development in sea urchins. Environ Res 30: 442–452

  • Pagano G, Korkina LG, Iaccarino M, De Biase A, Deeva IB, Doronin YK, Guida M, Melluso, G, Meriç S, Oral R, Trieff NM, Warnau M (2001) Developmental, cytogenetic and biochemical effects of spiked or environmentally polluted sediments in sea urchin bioassays. In: Garrigues P, Walker CH, Barth H (eds) Biomarkers in Marine Ecosystems: A Practical Approach. Elsevier, pp. 85–129

  • Pagano G, Guida M, Tommasi F, Oral R (2015a) Health effects and toxicity mechanisms of rare earth elements—knowledge gaps and research prospects. Ecotoxicol Environ Saf 115C:40–48. doi:10.1016/j.ecoenv.2015.01.030

    Article  Google Scholar 

  • Pagano G, Aliberti F, Guida M, Oral R, Siciliano A, Trifuoggi M, Tommasi F (2015b) Human exposures to rare earth elements: state of art and research priorities. Environ Res 142:215–220. doi:10.1016/j.envres.2015.06.039

    Article  CAS  Google Scholar 

  • Pagano G, Guida M, Siciliano A, Oral R, Koçbaş F, Palumbo A, Castellano I, Migliaccio O, Thomas PJ, Trifuoggi M (2016) Comparative toxicities of selected rare earth elements: sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects. Environ Res 147:453–460. doi:10.1016/j.envres.2016.02.031

    Article  CAS  Google Scholar 

  • Pagano G, Guida M, Trifuoggi M, Thomas P, Palumbo A, Romano G, Oral R (2017a) Sea urchin bioassays in toxicity testing: I. Inorganics, organics, complex mixtures and natural products. Expert Opin Environ Biol 6:1. doi: 10.4172/2325-9655.1000142

  • Pagano G, Thomas J, Guida M, Palumbo A, Romano G, Oral R, Trifuoggi M (2017b) Sea urchin bioassays in toxicity testing: II. Sediment evaluation Expert Opin Environ Biol 6:1. doi:10.4172/2325-9655.1000141

    Google Scholar 

  • Rim KT (2016) Trends in occupational toxicology of rare earth elements. In: Pagano G (ed) Rare earth elements in human and environmental health: at crossroads between toxicity and safety. Pan Stanford, Singapore, pp 11–46. isbn:978-981-4745-00-0

  • Snow SJ, McGee J, Miller DB, Bass V, Schladweiler MC, Thomas RF, Krantz T, King C, Ledbetter AD, Richards J, Weinstein JP, Conner T, Willis R, Linak WP, Nash D, Wood CE, Elmore SA, Morrison JP, Johnson CL, Gilmour MI, Kodavanti UP (2014) Inhaled diesel emissions generated with cerium oxide nanoparticle fuel additive induce adverse pulmonary and systemic effects. Toxicol Sci 142:403–417. doi:10.1093/toxsci/kfu187

    Article  CAS  Google Scholar 

  • Taggart RK, Hower JC, Dwyer GS, Hsu-Kim H (2016) Trends in the rare earth element content of U.S.-based coal combustion fly ashes. Environ Sci Technol 50:5919–5926. doi:10.1021/acs.est.6b00085

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency (2012) Rare earth elements: a review of production, processing, recycling, and associated environmental issues. EPA 600-R-12-572.

  • Wang Q, Jun Deng J, Liu X, Zhang Q, Sun S, Jiang C, Zhou F (2010) Discovery of the REE minerals and its geological significance in the Quyang bauxite deposit, West Guangxi, China. J Asian Earth Sci 39:701–712. doi:10.1016/j.jseaes.2010.05.005

    Article  Google Scholar 

  • Wang B, Yan L, Huo W, Lu Q, Cheng Z, Zhang J, Li Z (2016) Rare earth elements and hypertension risk among housewives: a pilot study in Shanxi Province, China. Environ Pollut S0269-7491(16):31455–31455. doi:10.1016/j.envpol. 2016.10.066

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Giovanni Pagano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material


(DOCX 21 kb)


(PPTX 52.7 kb)


(DOCX 21 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trifuoggi, M., Pagano, G., Guida, M. et al. Comparative toxicity of seven rare earth elements in sea urchin early life stages. Environ Sci Pollut Res 24, 20803–20810 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Rare earth elements
  • Sea urchins
  • Developmental defects
  • Cytogenetic anomalies
  • Sphaerechinus granularis
  • Arbacia lixula
  • Paracentrotus lividus