Skip to main content
Log in

The black rock series supported SCR catalyst for NO x removal

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO2-TiO2 sols and regulating its catalytic active constituents with V2O5 and MoO3. Consequently, 90% NO removal ratio was obtained within 300–400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N2 adsorption–desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR), and NH3-temperature programmed desorption (NH3-TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen Oα, well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO2-based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO2 and H2O exceeding 85% at temperatures from 300 to 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Apostolescu N, Geiger B, Hizbullah K, Jan MT, Kureti S, Reichert D, Schott F, Weisweiler W (2006) Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts. Appl Catal B-Environ 62:104–114

    Article  CAS  Google Scholar 

  • Arfaoui J, Boudali LK, Ghorbel A, Delahay G (2009) Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3. Catal Today 142:234–238

    Article  CAS  Google Scholar 

  • Baltes M, Cassiers K, Van Der Voort P, Weckhuysen BM, Schoonheydt RA, Vansant EF (2001) MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)(2): a detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx. J Catal 197:160–171

    Article  CAS  Google Scholar 

  • Cai ZL, Feng YL, Li HR, Zhou YZ (2013) Selective separation and extraction of vanadium(IV) and manganese(II) from co-leaching solution of roasted stone coal and pyrolusite via solvent extraction. Ind Eng Chem Res 52:13768–13776

    Article  CAS  Google Scholar 

  • Chao KJ, Wu CN, Chang H, Lee LJ, Hu SF (1997) Incorporation of vanadium in mesoporous MCM-41 and microporous AFI zeolites. J Phys Chem B 101:6341–6349

    Article  Google Scholar 

  • Chen L, Li JH, Ge MF (2011) The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J 170:531–537

    Article  CAS  Google Scholar 

  • Chen TJ, Zhang YM, Song SX (2010) Improved extraction of vanadium from a Chinese vanadium-bearing stone coal using a modified roast-leach process. Asia Pac J Chem Eng 5:778–784

    Article  CAS  Google Scholar 

  • Cheng K, Liu J, Zhao Z, Wei YC, Jiang GY, Duan AJ (2015) Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3. RSC Adv 5:45172–45183

    Article  CAS  Google Scholar 

  • Claesson EM, Philipse AP (2005) Monodisperse magnetizable composite silica spheres with tunable dipolar interactions. Langmuir 21:9412–9419

    Article  CAS  Google Scholar 

  • He DS, Feng QM, Zhang GF, Ou LM, Lu YP (2007) An environmentally-friendly technology of vanadium extraction from stone coal. Miner Eng 20:1184–1186

    Article  CAS  Google Scholar 

  • He YY, Ford ME, Zhu MH, Liu QC, Tumuluri U, Wu ZL, Wachs IE (2016) Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts. Appl Catal B-Environ 193:141–150

    Article  CAS  Google Scholar 

  • Kamata H, Ohara H, Takahashi K, Yukimura A, Seo Y (2001) SO2 oxidation over the V2O5/TiO2 SCR catalyst. Catal Lett 73:79–83

    Article  CAS  Google Scholar 

  • Kebede MA, Varner ME, Scharko NK, Gerber RB, Raff JD (2013) Photooxidation of ammonia on TiO2 as a source of NO and NO2 under atmospheric conditions. J Am Chem Soc 135:8606–8615

    Article  CAS  Google Scholar 

  • Kijlstra WS, Daamen JCML, vande Graaf JM, vander Linden B, Poels EK, Bliek A (1996) Inhibiting and deactivating effects of water on the selective catalytic reduction of nitric oxide with ammonia over MnOx/Al2O3. Appl Catal B-Environ 7:337–357

    Article  CAS  Google Scholar 

  • Li FK, Shen BX, Tian LH, Li GL, He C (2016a) Enhancement of SCR activity and mechanical stability on cordierite supported V2O5-WO3/TiO2 catalyst by substrate acid pretreatment and addition of silica. Powder Technol 297:384–391

    Article  CAS  Google Scholar 

  • Li X, Li XS, Li JH, Hao JM (2016b) Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia. J Hazard Mater 318:615–622

    Article  CAS  Google Scholar 

  • Lietti L, Nova I, Forzatti P (2000) Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts. Top Catal 11:111–122

    Article  Google Scholar 

  • Liu B, Du J, Lv XW, Qiu Y, Tao CY (2015) Washcoating of cordierite honeycomb with vanadia-tungsta-titania mixed oxides for selective catalytic reduction of NO with NH3. Catal Sci Technol 5:1241–1250

    Article  CAS  Google Scholar 

  • Liu CX, Chen L, Li JH, Ma L, Arandiyan H, Du Y, Xu JY, Hao JM (2012) Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environ Sci Technol 46:6182–6189

    Article  CAS  Google Scholar 

  • Liu YH, Yang C, Li PY, Li SQ (2010) A new process of extracting vanadium from stone coal. Int J Min Met Mater 17:381–388

    Article  CAS  Google Scholar 

  • Liu ZM, Zhang SX, Li JH, Zhu JZ, Ma LL (2014) Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Appl Catal B-Environ 158:11–19

    Article  Google Scholar 

  • Long XL, Xin ZL, Wang HX, Xiao WD, Yuan WK (2004) Simultaneous removal of NO and SO2 with hexamminecobalt(II) solution coupled with the hexamminecobalt(II) regeneration catalyzed by activated carbon. Appl Catal B-Environ 54:25–32

    Article  CAS  Google Scholar 

  • Matsumoto S, Ikeda Y, Suzuki H, Ogai M, Miyoshi N (2000) NOx storage reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Appl Catal B-Environ 25:115–124

    Article  CAS  Google Scholar 

  • Nova I, Lietti L, Tronconi E, Forzatti P (2000) Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst. Catal Today 60:73–82

    Article  CAS  Google Scholar 

  • Nova I, Ciardelli C, Tronconi E, Chatterjee D, Weibel M (2009) Unifying redox kinetics for standard and fast NH3-SCR over a V2O5-WO3/TiO2 catalyst. AICHE J 55:1514–1529

    Article  CAS  Google Scholar 

  • Ohsaka T, Izumi F, Fujiki Y (1978) Raman spectrum of anatase, TiO2. J Raman Spectrosc 7:321–324

    Article  Google Scholar 

  • Putluru SSR, Schill L, Mossin S, Jensen AD, Fehrmann R (2014) Hydrothermally stable Fe–W–Ti SCR catalysts prepared by deposition–precipitation. Catal Lett 144:1170–1177

    Article  CAS  Google Scholar 

  • Qiu Y, Liu B, Du J, Tang Q, Liu ZH, Liu RL, Tao CY (2016) The monolithic cordierite supported V2O5-MoO3/TiO2 catalyst for NH3-SCR. Chem Eng J 294:264–272

    Article  CAS  Google Scholar 

  • Senior CL, Lignell DO, Sarofim AF, Mehta A (2006) Modeling arsenic partitioning in coal-fired power plants. Combust Flame 147:209–221

    Article  CAS  Google Scholar 

  • Shen MQ, Li CX, Wang JQ, Xu LL, Wang WL, Wang J (2015) New insight into the promotion effect of Cu doped V2O5/WO3-TiO2 for low temperature NH3-SCR performance. RSC Adv 5:35155–35165

    Article  CAS  Google Scholar 

  • Solsona B, Blasco T, Nieto JML, Pena ML, Rey F, Vidal-Moya A (2001) Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the oxidative dehydrogenation of alkanes. J Catal 203:443–452

    Article  CAS  Google Scholar 

  • Tanabe K, Sumiyoshi T, Shibata K, Kiyoura T, Kitagawa J (1974) New hypothesis regarding surface acidity of binary metal-oxides. B Chem Soc Jpn 47:1064–1066

    Article  CAS  Google Scholar 

  • Tang FS, Xu BL, Shi HH, Qiu JH, Fan YN (2010) The poisoning effect of Na+ and Ca2+ ions doped on the V2O5/TiO2 catalysts for selective catalytic reduction of NO by NH3. Appl Catal B-Environ 94:71–76

    Article  CAS  Google Scholar 

  • Tian X, Xiao Y, Zhou P, Zhang W, Luo X (2014) Investigation on performance of V2O5-WO3-TiO2-cordierite catalyst modified with cu, Mn and Ce for urea-SCR of NO. Mater Res Innov 18:202–206

    Google Scholar 

  • Wang CZ, Yang SJ, Chang HZ, Peng Y, Li JH (2013) Dispersion of tungsten oxide on SCR performance of V2O5-WO3/TiO2: acidity, surface species and catalytic activity. Chem Eng J 225:520–527

    Article  CAS  Google Scholar 

  • Wang HQ, Wang PL, Chen XB, Wu ZB (2017) Uniformly active phase loaded selective catalytic reduction catalysts (V2O5/TNTs) with superior alkaline resistance performance. J Hazard Mater 324:507–515

    Article  CAS  Google Scholar 

  • Wielgosinski G, Grochowalski A, Machej T, Pajak T, Cwiakalski W (2007) Catalytic destruction of 1,2-dichlorobenzene on V2O5-WO3/Al2O3-TiO2 catalyst. Chemosphere 67:S150–S154

    Article  CAS  Google Scholar 

  • Wu QY, Chen JX, Zhang JY (2008) Effect of yttrium and praseodymium on properties of Ce(0.75)Zr(0.25)O(2) solid solution for CH(4)-CO(2) reforming. Fuel Process Technol 89:993–999

    Article  CAS  Google Scholar 

  • Yang J, Ma HT, Yamamoto Y, Yu J, Xu GW, Zhang ZG, Suzuki Y (2013) SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces. Chem Eng J 230:513–521

    Article  CAS  Google Scholar 

  • Yang X, Zhang YM, Bao SX, Shen C (2016) Separation and recovery of vanadium from a sulfuric-acid leaching solution of stone coal by solvent extraction using trialkylamine. Sep Purif Technol 164:49–55

    Article  CAS  Google Scholar 

  • Yu WC, Wu XD, Si ZC, Weng D (2013) Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5-WO3/TiO2 catalyst. Appl Surf Sci 283:209–214

    Article  CAS  Google Scholar 

  • Zhang YM, Bao SX, Liu T, Chen TJ, Huang J (2011) The technology of extracting vanadium from stone coal in China: history, current status and future prospects. Hydrometallurgy 109:116–124

    Article  CAS  Google Scholar 

  • Zhao LK, Li CT, Zhang XN, Zeng GM, Zhang J, Xie YE (2016) Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas. Environ Sci Pollut R 23:1471–1481

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Chongqing Administration of Land, Resources and Housing (no. KJ-2015021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Du or Changyuan Tao.

Additional information

Responsible editor: Suresh Pillai

Highlights

• Black rock series (BRS) was applied for the deNO x catalyst preparation without pre-separations.

• The prepared catalyst showed good deNO x activity and resistance to alkali metals, SO2, and steam poisoning.

• The method provides a new route to fully utilize BRS and develop a low-cost NH3-SCR catalyst.

Electronic supplementary material

ESM 1

(DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, B., Luo, H., Tang, Q. et al. The black rock series supported SCR catalyst for NO x removal. Environ Sci Pollut Res 24, 21761–21769 (2017). https://doi.org/10.1007/s11356-017-9622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9622-0

Keywords

Navigation