Time-resolved monitoring of polycyclic aromatic hydrocarbons adsorbed on atmospheric particles

Abstract

Real-time monitoring of individual particles from atmospheric aerosols was performed by means of a specifically developed single-particle fluorescence spectrometer (SPFS). The observed fluorescence was assigned to particles bearing polycyclic aromatic hydrocarbons (PAH). This assignment was supported by an intercomparison with classical speciation on filters followed by gas chromatography-mass spectrometry (GC-MS) analysis. As compared with daily averaged data, our time-resolved approach provided information about the physicochemical dynamics of the particles. In particular, distinctions were made between background emissions related to heating, and traffic peaks during rush hours. Also, the evolution of the peak fluorescence wavelength provided an indication of the aging of the particles during the day.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Birdwell JE, Valsaraj KT (2010) Characterization of dissolved organic matter in fogwater by excitation–emission matrix fluorescence spectroscopy. Atmos Environ 44:3246. doi:10.1016/j.atmosenv.2010.05.055

    CAS  Article  Google Scholar 

  2. Bonacina, L., Kiselev, D., Wolf, J.P. (2013) Measurement device and method for detection of airborne particles, European Patent EP 12167800.7 and US Patent 2013/0301047A1

  3. Chang JL, Thompson JE (2010) Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmos Environ 44:541–551. doi:10.1016/j.atmosenv.2009.10.042

    CAS  Article  Google Scholar 

  4. Commission directive (EU) (2015) 2015/1480 of 28 August 2015 amending several annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality. Official Journal of the European Union L 226/4 (29/8/2015): 4–11

  5. EU-Commission (2004) Directive 2004/07/EC of the European parliament and the council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal of the European Communities L 23(26/1/2005): 3–16

  6. Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press, San Diego, pp 436–546

    Google Scholar 

  7. Hayashida K, Amagai K, Satoh K, Arai M (2006) Experimental analysis of soot formation in sooting diffusion flame by using laser-induced emissions. J Eng Gas Turbines Power 128:241. doi:10.1115/1.2056536

    CAS  Article  Google Scholar 

  8. Healy RM et al (2012) Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris. Atmos Chem Phys 12:1681–1700. doi:10.5194/acp-12-1681-2012

    CAS  Article  Google Scholar 

  9. Herckes P, Valsaraj KT, Collett JL Jr (2013) A review of observations of organic matter in fogs and clouds: origin, processing and fate. Atmos Res 132–133:434–449. doi:10.1016/j.atmosres.2013.06.005

    Article  Google Scholar 

  10. Herrmann H, Brüggemann E, Franck U, Gnauk T, Löschau G, Müller K, Plewka A, Spindler G (2006) A source study of PM in Saxony by size-segregated characterisation. J Atmos Chem 55:103–130

    CAS  Article  Google Scholar 

  11. Hill SC et al (1999) Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal Chem Technol 3:221–239. doi:10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7

    CAS  Article  Google Scholar 

  12. Huffman JA et al (2013) High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys 13:6151–6164

    Article  Google Scholar 

  13. Ito K, Kinney PL, Thurston GD (1995) Variations in PM10 concentrations within two metropolitan areas and their implications for health effects analyses. Inhal Toxicol 7:735–745. doi:10.3109/08958379509014477

    CAS  Article  Google Scholar 

  14. Kasparian et al. (2017) Assessing the dynamics of organic aerosols over the North Atlantic Ocean, Scientific Report submitted

  15. Kim D et al (2009) Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere 76:1075–1081. doi:10.1016/j.chemosphere.2009.04.031

    CAS  Article  Google Scholar 

  16. Kiselev D, Bonacina L, Wolf JP (2013) A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev Sci Instrum 84:033302. doi:10.1063/1.4793792

    Article  Google Scholar 

  17. Laskin, A., Laskin, J., Nizkorodov, S. A. (2015) Chemistry of atmospheric brown carbon, Chem Rev, 115, 4335. DOI: 10.1021/cr5006167

  18. Lee, H. J. (Julie), Aiona PK, Laskin A, Laskin J, Nizkorodov SA (2014) Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ Sci Technol 48:10217–10226. doi:10.1021/es502515r

    Article  Google Scholar 

  19. Maki T et al (2008) Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region. Dunhuang City Air Qual Atmos Health 1:81–89

    CAS  Article  Google Scholar 

  20. Miyakawa T et al (2015) Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: potential impacts of nonbiological materials on autofluorescence measurements of airborne particles. J Geophys Res Atmospheres 120:1171–1185. doi:10.1002/2014JD022189

    Article  Google Scholar 

  21. Mohr C et al (2013) Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. Environ Sci Technol 47:6316. doi:10.1021/es400683v

    CAS  Article  Google Scholar 

  22. Pan YL (2015) Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. J Quant Spec Rad Trans 150:12–35. doi:10.1016/j.jqsrt.2014.06.007

    CAS  Article  Google Scholar 

  23. Pan Y et al (2001) High-speed, high-sensitivity aerosol fluorescence spectrum detection using 32-anode PMT detector. RevSciInst 72:1831–1836. doi:10.1063/1.1344179

    CAS  Google Scholar 

  24. Pan YL et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639. doi:10.1080/02786820300904

    CAS  Article  Google Scholar 

  25. Pan Y-L, Huang H, Chang RK (2012) Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD. J Quant Spectrosc Radiative Transf 113:2213. doi:10.1016/j.jqsrt.2012.07.028

    CAS  Article  Google Scholar 

  26. Pan Y-L, Santarpia J, Ratnesar-Shumate S, Corson E, Eshbaugh J, Hill S, Williamson C, Coleman M, Bare C, Kinahan S (2014) Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J Quant Spectrosc Radiative Transf 133:538–550. doi:10.1016/j.jqsrt.2013.09.017

  27. Phillips SM, Smith GD (2015) Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy. J Phys Chem A 119:4545–4551. doi:10.1021/jp510709e

    CAS  Article  Google Scholar 

  28. Pinnick RG et al (2013) Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: variability of concentrations and possible constituents and sources of particles in various spectral clusters. Atmos Environment 65:195–204. doi:10.1016/j.atmosenv.2012.09.020

    CAS  Article  Google Scholar 

  29. Pinnick RG et al (2004) Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon. Atmos Environ 38:1657–1672. doi:10.1016/j.atmosenv.2003.11.017

    CAS  Article  Google Scholar 

  30. Pöhlker C, Huffman JA, Pöschl U (2012) Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos Meas Tech 5:37–71. doi:10.5194/amt-5-37-2012

    Article  Google Scholar 

  31. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742. doi:10.1080/10473289.2006.10464485

    CAS  Article  Google Scholar 

  32. Rincón, A. G., Guzmán, M. I., Hoffmann, M. R., Colussi, A. J. (2009) Optical absorptivity versus molecular composition of model organic aerosol matter, J Phys Chem A, 113, 10512–10520. DOI: 10.1021/jp904644n

  33. Robinson NH et al (2013) Cluster analysis of WIBS single-particle bioaerosol data. Atmos Meas Tech 6:337–347. doi:10.5194/amt-6-337-2013

    Article  Google Scholar 

  34. Seinfeld J and Pandis S (2006) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

  35. Saari SE, Putkiranta MJ, Keskinen J (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ 71:202–209

    CAS  Article  Google Scholar 

  36. Sousa G, Gaulier G, Bonacina L, Wolf J-P (2016) Portable instrument discriminating bio-aerosols from non-bio-aerosols using pump-probe spectroscopy. Sci Report 6:33157. doi:10.1038/srep33157

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We acknowledge unvaluable experimental assistance from Francesco Battaglia, Elicio Délicado, and Pierre-Emmanuel Huguenot (État de Genève – DETA – SABRA). We also acknowledge funding by the Swiss National Science Foundation through the NCCR MUST (Molecular Ultrafast Science and Technology) Network. J.P. Wolf acknowledges support from the European Research Council ERC-2013-PoC, Grant 632156, « LIPBA ».

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jérôme Kasparian.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, G., Kiselev, D., Kasparian, J. et al. Time-resolved monitoring of polycyclic aromatic hydrocarbons adsorbed on atmospheric particles. Environ Sci Pollut Res 24, 19517–19523 (2017). https://doi.org/10.1007/s11356-017-9612-2

Download citation

Keywords

  • Aerosols
  • Monitoring
  • Fluorescence
  • Polycyclic aromatic hydrocarbons
  • Identification
  • Pollution
  • Real time