Skip to main content
Log in

Time-resolved monitoring of polycyclic aromatic hydrocarbons adsorbed on atmospheric particles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Real-time monitoring of individual particles from atmospheric aerosols was performed by means of a specifically developed single-particle fluorescence spectrometer (SPFS). The observed fluorescence was assigned to particles bearing polycyclic aromatic hydrocarbons (PAH). This assignment was supported by an intercomparison with classical speciation on filters followed by gas chromatography-mass spectrometry (GC-MS) analysis. As compared with daily averaged data, our time-resolved approach provided information about the physicochemical dynamics of the particles. In particular, distinctions were made between background emissions related to heating, and traffic peaks during rush hours. Also, the evolution of the peak fluorescence wavelength provided an indication of the aging of the particles during the day.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Birdwell JE, Valsaraj KT (2010) Characterization of dissolved organic matter in fogwater by excitation–emission matrix fluorescence spectroscopy. Atmos Environ 44:3246. doi:10.1016/j.atmosenv.2010.05.055

    Article  CAS  Google Scholar 

  • Bonacina, L., Kiselev, D., Wolf, J.P. (2013) Measurement device and method for detection of airborne particles, European Patent EP 12167800.7 and US Patent 2013/0301047A1

  • Chang JL, Thompson JE (2010) Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmos Environ 44:541–551. doi:10.1016/j.atmosenv.2009.10.042

    Article  CAS  Google Scholar 

  • Commission directive (EU) (2015) 2015/1480 of 28 August 2015 amending several annexes to Directives 2004/107/EC and 2008/50/EC of the European Parliament and of the Council laying down the rules concerning reference methods, data validation and location of sampling points for the assessment of ambient air quality. Official Journal of the European Union L 226/4 (29/8/2015): 4–11

  • EU-Commission (2004) Directive 2004/07/EC of the European parliament and the council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Official Journal of the European Communities L 23(26/1/2005): 3–16

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere: theory, experiments, and applications. Academic Press, San Diego, pp 436–546

    Book  Google Scholar 

  • Hayashida K, Amagai K, Satoh K, Arai M (2006) Experimental analysis of soot formation in sooting diffusion flame by using laser-induced emissions. J Eng Gas Turbines Power 128:241. doi:10.1115/1.2056536

    Article  CAS  Google Scholar 

  • Healy RM et al (2012) Sources and mixing state of size-resolved elemental carbon particles in a European megacity: Paris. Atmos Chem Phys 12:1681–1700. doi:10.5194/acp-12-1681-2012

    Article  CAS  Google Scholar 

  • Herckes P, Valsaraj KT, Collett JL Jr (2013) A review of observations of organic matter in fogs and clouds: origin, processing and fate. Atmos Res 132–133:434–449. doi:10.1016/j.atmosres.2013.06.005

    Article  Google Scholar 

  • Herrmann H, Brüggemann E, Franck U, Gnauk T, Löschau G, Müller K, Plewka A, Spindler G (2006) A source study of PM in Saxony by size-segregated characterisation. J Atmos Chem 55:103–130

    Article  CAS  Google Scholar 

  • Hill SC et al (1999) Real-time measurement of fluorescence spectra from single airborne biological particles. Field Anal Chem Technol 3:221–239. doi:10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Huffman JA et al (2013) High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys 13:6151–6164

    Article  Google Scholar 

  • Ito K, Kinney PL, Thurston GD (1995) Variations in PM10 concentrations within two metropolitan areas and their implications for health effects analyses. Inhal Toxicol 7:735–745. doi:10.3109/08958379509014477

    Article  CAS  Google Scholar 

  • Kasparian et al. (2017) Assessing the dynamics of organic aerosols over the North Atlantic Ocean, Scientific Report submitted

  • Kim D et al (2009) Environmental aging of polycyclic aromatic hydrocarbons on soot and its effect on source identification. Chemosphere 76:1075–1081. doi:10.1016/j.chemosphere.2009.04.031

    Article  CAS  Google Scholar 

  • Kiselev D, Bonacina L, Wolf JP (2013) A flash-lamp based device for fluorescence detection and identification of individual pollen grains. Rev Sci Instrum 84:033302. doi:10.1063/1.4793792

    Article  Google Scholar 

  • Laskin, A., Laskin, J., Nizkorodov, S. A. (2015) Chemistry of atmospheric brown carbon, Chem Rev, 115, 4335. DOI: 10.1021/cr5006167

  • Lee, H. J. (Julie), Aiona PK, Laskin A, Laskin J, Nizkorodov SA (2014) Effect of solar radiation on the optical properties and molecular composition of laboratory proxies of atmospheric brown carbon. Environ Sci Technol 48:10217–10226. doi:10.1021/es502515r

    Article  Google Scholar 

  • Maki T et al (2008) Phylogenetic diversity and vertical distribution of a halobacterial community in the atmosphere of an Asian dust (KOSA) source region. Dunhuang City Air Qual Atmos Health 1:81–89

    Article  CAS  Google Scholar 

  • Miyakawa T et al (2015) Ground-based measurement of fluorescent aerosol particles in Tokyo in the spring of 2013: potential impacts of nonbiological materials on autofluorescence measurements of airborne particles. J Geophys Res Atmospheres 120:1171–1185. doi:10.1002/2014JD022189

    Article  Google Scholar 

  • Mohr C et al (2013) Contribution of nitrated phenols to wood burning brown carbon light absorption in Detling, United Kingdom during winter time. Environ Sci Technol 47:6316. doi:10.1021/es400683v

    Article  CAS  Google Scholar 

  • Pan YL (2015) Detection and characterization of biological and other organic-carbon aerosol particles in atmosphere using fluorescence. J Quant Spec Rad Trans 150:12–35. doi:10.1016/j.jqsrt.2014.06.007

    Article  CAS  Google Scholar 

  • Pan Y et al (2001) High-speed, high-sensitivity aerosol fluorescence spectrum detection using 32-anode PMT detector. RevSciInst 72:1831–1836. doi:10.1063/1.1344179

    CAS  Google Scholar 

  • Pan YL et al (2003) Single-particle fluorescence spectrometer for ambient aerosols. Aerosol Sci Technol 37:628–639. doi:10.1080/02786820300904

    Article  CAS  Google Scholar 

  • Pan Y-L, Huang H, Chang RK (2012) Clustered and integrated fluorescence spectra from single atmospheric aerosol particles excited by a 263- and 351-nm laser at New Haven, CT, and Adelphi, MD. J Quant Spectrosc Radiative Transf 113:2213. doi:10.1016/j.jqsrt.2012.07.028

    Article  CAS  Google Scholar 

  • Pan Y-L, Santarpia J, Ratnesar-Shumate S, Corson E, Eshbaugh J, Hill S, Williamson C, Coleman M, Bare C, Kinahan S (2014) Effects of ozone and relative humidity on fluorescence spectra of octapeptide bioaerosol particles. J Quant Spectrosc Radiative Transf 133:538–550. doi:10.1016/j.jqsrt.2013.09.017

  • Phillips SM, Smith GD (2015) Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy. J Phys Chem A 119:4545–4551. doi:10.1021/jp510709e

    Article  CAS  Google Scholar 

  • Pinnick RG et al (2013) Fluorescence spectra and elastic scattering characteristics of atmospheric aerosol in Las Cruces, New Mexico, USA: variability of concentrations and possible constituents and sources of particles in various spectral clusters. Atmos Environment 65:195–204. doi:10.1016/j.atmosenv.2012.09.020

    Article  CAS  Google Scholar 

  • Pinnick RG et al (2004) Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon. Atmos Environ 38:1657–1672. doi:10.1016/j.atmosenv.2003.11.017

    Article  CAS  Google Scholar 

  • Pöhlker C, Huffman JA, Pöschl U (2012) Autofluorescence of atmospheric bioaerosols—fluorescent biomolecules and potential interferences. Atmos Meas Tech 5:37–71. doi:10.5194/amt-5-37-2012

    Article  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage Assoc 56:709–742. doi:10.1080/10473289.2006.10464485

    Article  CAS  Google Scholar 

  • Rincón, A. G., Guzmán, M. I., Hoffmann, M. R., Colussi, A. J. (2009) Optical absorptivity versus molecular composition of model organic aerosol matter, J Phys Chem A, 113, 10512–10520. DOI: 10.1021/jp904644n

  • Robinson NH et al (2013) Cluster analysis of WIBS single-particle bioaerosol data. Atmos Meas Tech 6:337–347. doi:10.5194/amt-6-337-2013

    Article  Google Scholar 

  • Seinfeld J and Pandis S (2006) Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons

  • Saari SE, Putkiranta MJ, Keskinen J (2013) Fluorescence spectroscopy of atmospherically relevant bacterial and fungal spores and potential interferences. Atmos Environ 71:202–209

    Article  CAS  Google Scholar 

  • Sousa G, Gaulier G, Bonacina L, Wolf J-P (2016) Portable instrument discriminating bio-aerosols from non-bio-aerosols using pump-probe spectroscopy. Sci Report 6:33157. doi:10.1038/srep33157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge unvaluable experimental assistance from Francesco Battaglia, Elicio Délicado, and Pierre-Emmanuel Huguenot (État de Genève – DETA – SABRA). We also acknowledge funding by the Swiss National Science Foundation through the NCCR MUST (Molecular Ultrafast Science and Technology) Network. J.P. Wolf acknowledges support from the European Research Council ERC-2013-PoC, Grant 632156, « LIPBA ».

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Kasparian.

Additional information

Responsible editor: Constantini Samara

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, G., Kiselev, D., Kasparian, J. et al. Time-resolved monitoring of polycyclic aromatic hydrocarbons adsorbed on atmospheric particles. Environ Sci Pollut Res 24, 19517–19523 (2017). https://doi.org/10.1007/s11356-017-9612-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9612-2

Keywords

Navigation