Skip to main content
Log in

Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Samples of ambient air (including gaseous and particulate phases), dust fall, surface soil, rhizosphere soil, core (edible part), outer leaf, and root of cabbage from eight vegetable plots near a large coking manufacturer were collected during the harvest period. Concentrations, compositions, and distributions of parent PAHs in different samples were determined. Our results indicated that most of the parent PAHs in air occurred in the gaseous phase, dominated by low molecular weight (LMW) species with two to three rings. Specific isomeric ratios and principal component analysis were employed to preliminarily identify the local sources of parent PAHs emitted. The main emission sources of parent PAHs could be apportioned as a mixture of coal combustion, coking production, and traffic tailing gas. PAH components with two to four rings were prevailing in dust fall, surface soil, and rhizosphere soil. Concentrations of PAHs in surface soil exhibited a significant positive correlation with topsoil TOC fractions. Compositional profiles in outer leaf and core of cabbage, dominated by LMW species, were similar to those in the local air. Overall, the order of parent PAH concentration in cabbage was outer leaf > root > core. Partial correlation analysis and multivariate linear stepwise regression revealed that PAH concentrations in cabbage core were closely associated with PAHs present both in root and in outer leaf, namely, affected by adsorption, then absorption, and translocation of PAHs from rhizosphere soil and ambient air, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alagić SC, Maluckov BS, Radojicic VB (2015) How can plants manage polycyclic aromatic hydrocarbons? May these effects represent a useful tool for an effective soil remediation? A review. Clean Techn Environ Policy 17(3):597–614

    Article  Google Scholar 

  • Ashraf MW, Salam A (2012) Polycyclic aromatic hydrocarbons (PAHs) in vegetables and fruits produced in Saudi Arabia. Bull Environ Contam Toxicol 88(4):543–547

    Article  CAS  Google Scholar 

  • Bosch C, Andersson A, Krusa M, Bandh C, Hovorkova I, Klanova J, Knowles TDJ, Pancost RD, Evershed RP, Gustafsson O (2015) Source apportionment of polycyclic aromatic hydrocarbons in central European soils with compound-specific triple isotopes (ΔC-13, ΔC-14, and ΔH-2). Environ Sci Technol 49(13):7657–7665

    Article  CAS  Google Scholar 

  • Brown AS, Brown RJC (2012) Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment. J Environ Monit 14(8):2072–2082

    Article  CAS  Google Scholar 

  • Cao X, Liu M, Song Y, Ackland ML (2013) Composition, sources, and potential toxicology of polycyclic aromatic hydrocarbons (PAHs) in agricultural soils in Liaoning, People’s Republic of China. Environ Monit Assess 185(3):2231–2241

    Article  CAS  Google Scholar 

  • Chen L, Ran Y, Xing B, Mai B, He J, Wei X, Fu J, Sheng G (2005a) Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60(7):879–890

    Article  CAS  Google Scholar 

  • Chen Y, Sheng G, Bi X, Feng Y, Mai B, Fu J (2005b) Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ Sci Technol 39(6):1861–1867

    Article  CAS  Google Scholar 

  • Ciemniak A, Witczak A, Mocek K (2013) Assessment of honey contamination with polycyclic aromatic hydrocarbons. J Environ Sci Health B 48(11):993–998

    Article  CAS  Google Scholar 

  • Cui Y, Guo L, Zhang G, Li H, He Q (2015) Human health risks of PAHs in soils and agricultural products in coking areas, Shanxi Province, China. J Agro-Environ Sci 34(1):72–79 (in Chinese)

    CAS  Google Scholar 

  • Edwards NT (1983) Polycyclic aromatic-hydrocarbons (PAHs) in the terrestrial environment—a review. J Environ Qual 12(4):427–441

    Article  CAS  Google Scholar 

  • Empereur-Bissonnet P, Asselineau J, Bernillon P, Daniau C, Fismes J, Morel JL, Cabanes PA (2013) Modeling polycyclic aromatic hydrocarbon uptake in common vegetables grown in aged polluted soils. Environ Risqué Santé 12(1):29–40

    Google Scholar 

  • Fismes J, Perrin-Ganier C, Empereur-Bissonnet P, Morel JL (2002) Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31(5):1649–1656

    Article  CAS  Google Scholar 

  • Golobočanin DD, Skrbic BD, Miljevic NR (2004) Principal component analysis for soil contamination with PAHs. Chemom Intell Lab Syst 72(2):219–223

    Article  Google Scholar 

  • Hong Y, Chen J, Zhang F, Zhang H, Xu L, Yin L, Chen Y (2015) Effects of urbanization on gaseous and particulate polycyclic aromatic hydrocarbons and polychlorinated biphenyls in a coastal city, China: levels, sources, and health risks. Environ Sci Pollut Res 22(19):14919–14931

    Article  CAS  Google Scholar 

  • Jiang Y, Wang X, Wu M, Sheng G, Fu J (2011) Contamination, source identification, and risk assessment of polycyclic aromatic hydrocarbons in agricultural soil of Shanghai, China. Environ Monit Assess 183(1–4):139–150

    Article  CAS  Google Scholar 

  • Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y (2016) Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf 126(1):54–62

    Google Scholar 

  • Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline-engines, highway tunnels, and wood combustion emissions. Atmos Environ 29(4):533–542

    Article  CAS  Google Scholar 

  • Khan S, Lin AJ, Zhang S, Hu Q, Zhu Y (2008) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in lettuce grown in the soils contaminated with long-term wastewater irrigation. J Hazard Mater 152(2):506–515

    Article  CAS  Google Scholar 

  • Kipopoulou AM, Manoli E, Samara C (1999) Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut 106(3):369–380

    Article  CAS  Google Scholar 

  • Li A, Jang JK, Scheff PA (2003) Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago. Environ Sci Technol 37(13):2958–2965

    Article  CAS  Google Scholar 

  • Li J, Shang X, Zhao Z, Tanguay RL, Dong Q, Huang C (2010a) Polycyclic aromatic hydrocarbons in water, sediment, soil, and plants of the Oujiang River waterway in Wenzhou, China. J Hazard Mater 173(1–3):75–81

    Article  CAS  Google Scholar 

  • Li W, Zhang C, Ma W, Zhou B, Liu Y, Jiang J, Li Y (2010b) Pollution characterizations and source apportionment of polycyclic aromatic hydrocarbons in air during domestic heating season of Xi’an. Environ Sci 31(7):1432–1437 (in Chinese)

    Google Scholar 

  • Li T, Li Y, Yuan C, Tao S (2014) Distribution of polycyclic aromatic hydrocarbons in surface soils of Yinchuan plain and surrounding areas. J Agro-Environ Sci 33(11):2136–2142 (in Chinese)

    CAS  Google Scholar 

  • Librando V, Perrini G, Tomasello M (2002) Biomonitoring of atmospheric PAHs by evergreen plants: correlations and applicability. Polycycl Aromat Compd 22(3–4):549–559

    Article  CAS  Google Scholar 

  • Lin H, Tao S, Zuo Q, Coveney RM (2007) Uptake of polycyclic aromatic hydrocarbons by maize plants. Environ Pollut 148(2):614–619

    Article  CAS  Google Scholar 

  • Ling W, Dang H, Liu J (2013) In situ gradient distribution of polycyclic aromatic hydrocarbons (PAHs) in contaminated rhizosphere soil: a field study. J Soils Sediments 13(4):677–685

    Article  CAS  Google Scholar 

  • Liu S, Tao S, Liu W, Dou H, Liu Y, Zhao J, Mark GL, Tian Z, Wang J, Wang L, Gao Y (2008) Seasonal and spatial occurrence and distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in rural and urban areas of the North Chinese Plain. Environ Pollut 156(3):651–656

    Article  CAS  Google Scholar 

  • Liu G, Yu L, Li J, Liu X, Zhang G (2011) PAHs in soils and estimated air soil exchange in the Pearl River Delta, South China. Environ Monit Assess 173(1–4):861–870

    Article  CAS  Google Scholar 

  • Liu WJ, Wang YL, Chen YC, Tao S, Liu WX (2017) Polycyclic aromatic hydrocarbons in ambient air, surface soil and wheat grain near a large steel-smelting manufacturer in northern China. J Environ Sci. doi:10.1016/j.jes.2016.10.016

  • Lv H, Cai Q, Jones KC, Zeng Q, Katsoyiannis A (2014) Levels of organic pollutants in vegetables and human exposure through diet: a review. Crit Rev Environ Sci Technol 44(1):1–33

    Article  Google Scholar 

  • Mackay D, Hickie B (2000) Mass balance model of source apportionment, transport and fate of PAHs in Lac Saint Louis, Quebec. Chemosphere 41(5):681–692

    Article  CAS  Google Scholar 

  • Maliszewska-kordybach B (1996) Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Appl Geochem 11(1–2):121–127

    Article  Google Scholar 

  • Manoli E, Kouras A, Samara C (2004) Profile analysis of ambient and source emitted particle-bound polycyclic aromatic hydrocarbons from three sites in northern Greece. Chemosphere 56(9):867–878

    Article  CAS  Google Scholar 

  • Masala S, Lim H, Bergvall C, Johansson C, Westerholm R (2016) Determination of semi-volatile and particle-associated polycyclic aromatic hydrocarbons in Stockholm air with emphasis on the highly carcinogenic dibenzopyrene isomers. Atmos Environ 140:370–380

    Article  CAS  Google Scholar 

  • Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32(4):450–455

    Article  CAS  Google Scholar 

  • Odabasi M, Falay EO, Tuna G, Altiok H, Kara M, Dumanoglu Y, Bayram A, Tolunay D, Elbir T (2015) Biomonitoring the spatial and historical variations of persistent organic pollutants (POPs) in an industrial region. Environ Sci Technol 49(4):2105–2114

    Article  CAS  Google Scholar 

  • Okedeyi OO, Nindi MM, Dube S, Awofolu OR (2013) Distribution and potential sources of polycyclic aromatic hydrocarbons in soils around coal-fired power plants in South Africa. Environ Monit Assess 185(3):2073–2082

    Article  CAS  Google Scholar 

  • Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat Res-Genet Toxicol Environ Mutagen 443(1–2):139–147

    Article  CAS  Google Scholar 

  • Ravindra K, Bencs L, Wauters E, De Hoog J, Deutsch F, Roekens E, Bleux N, Berghmans P, Van Grieken R (2006) Seasonal and site-specific variation in vapor and aerosol phase PAHs over Flanders (Belgium) and their relation with anthropogenic activities. Atmos Environ 40(4):771–785

    Article  CAS  Google Scholar 

  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47(12):6415–6424

    Article  Google Scholar 

  • Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33(30):5071–5079

    Article  CAS  Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5(4):169–195

    Article  CAS  Google Scholar 

  • Tao S, Jiao X, Chen S, Liu W, Coveney RM, Zhu L, Luo Y (2006a) Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa). Environ Pollut 140:406–415

    Article  CAS  Google Scholar 

  • Tao S, Jiao X, Chen S, Xu F, Li Y, Liu F (2006b) Uptake of vapor and particulate polycyclic aromatic hydrocarbons by cabbage. Environ Pollut 140(1):13–15

    Article  CAS  Google Scholar 

  • Tao S, Liu W, Li Y, Yang Y, Zuo Q, Li B, Cao J (2008) Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. Environ Sci Technol 42(22):8395–8400

    Article  CAS  Google Scholar 

  • Tao S, Cao J, Wang W, Zhao J, Wang W, Wang Z, Cao H, Xing B (2009a) A passive sampler with improved performance for collecting gaseous and particulate phase polycyclic aromatic hydrocarbons in air. Environ Sci Technol 43(11):4124–4129

    Article  CAS  Google Scholar 

  • Tao Y, Zhang S, Zhu Y, Christie P (2009b) Uptake and acropetal translocation of polycyclic aromatic hydrocarbons by wheat (Triticum aestivum L.) grown in field-contaminated soil. Environ Sci Technol 43(10):3556–3560

    Article  CAS  Google Scholar 

  • Tobiszewski M, Namiesnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Article  CAS  Google Scholar 

  • Trapp S, Matthies M (1995) Generic one-compartment model for uptake of organic-chemicals by foliar vegetation. Environ Sci Technol 29(9):2333–2338

    Article  CAS  Google Scholar 

  • Wang Y, Tao S, Jiao X, Coveney RM, Wu S, Xing B (2008) Polycyclic aromatic hydrocarbons in leaf cuticles and inner tissues of six species of trees in urban Beijing. Environ Pollut 151:158–164

    Article  CAS  Google Scholar 

  • Wang W, Simonich S, Giri B, Chang Y, Zhang Y, Jia Y, Tao S, Wang R, Wang B, Li W, Cao J, Lu X (2011a) Atmospheric concentrations and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China. Sci Total Environ 409(15):2942–2950

    Article  CAS  Google Scholar 

  • Wang Y, Qiao M, Liu Y, Arp HPH, Zhu Y (2011b) Comparison of polycyclic aromatic hydrocarbon uptake pathways and risk assessment of vegetables from waste-water irrigated areas in northern China. J Environ Monit 13(2):433–439

    Article  CAS  Google Scholar 

  • Wang Y, Tian Z, Zhu H, Cheng Z, Kang M, Luo C, Li J, Zhang G (2012) Polycyclic aromatic hydrocarbons (PAHs) in soils and vegetation near an e-waste recycling site in south China: concentration, distribution, source, and risk assessment. Sci Total Environ 439(22):187–193

    Article  CAS  Google Scholar 

  • Wang Y, Luo C, Wang S, Liu J, Pan S, Li J, Ming L, Zhang G, Li X (2015a) Assessment of the air-soil partitioning of polycyclic aromatic hydrocarbons in a paddy field using a modified fugacity sampler. Environ Sci Technol 49(1):284–291

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Luo C, Xu Y, Pan S, Li J, Ming L, Zhang G, Li X (2015b) Influence of rice growth on the fate of polycyclic aromatic hydrocarbons in a subtropical paddy field: a life cycle study. Chemosphere 119(1):1233–1239

    Article  CAS  Google Scholar 

  • Wang Y, Wang S, Luo C, Li J, Ming L, Zhang G, Li X (2015c) The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers. Environ Pollut 200(2):35–41

    Article  CAS  Google Scholar 

  • Waqas M, Khan S, Chao C, Shamshad I, Qamar Z, Khan K (2014) Quantification of PAHs and health risk via ingestion of vegetable in Khyber Pakhtunkhwa Province, Pakistan. Sci Total Environ 497-498:448–458

    Article  CAS  Google Scholar 

  • Wieczorek JK, Wieczorek ZJ (2007) Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants. Ecotoxicol Environ Saf 66(3):369–377

    Article  CAS  Google Scholar 

  • Wild E, Dent J, Barber JL, Thomas GO, Jones KC (2004) A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ Sci Technol 38(15):4195–4199

    Article  CAS  Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2007) Use of two-photon excitation microscopy and autofluorescence for visualizing the fate and behavior of semivolatile organic chemicals within living vegetation. Environ Toxicol Chem 26(12):2486–2493

    Article  CAS  Google Scholar 

  • Yang C, Su Y, Chen Y, Huang Y, Liu W, Shen G, Duan Y, Liu W, Tao S (2014) Emission factors of particulate matter and polycyclic aromatic hydrocarbons for residential solid fuels. Asian J Ecotoxicol 9(3):545–555 (in Chinese)

    Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515

    Article  CAS  Google Scholar 

  • Zezulka S, Klems M, Kummerova M (2014) Root and foliar uptake, translocation, and distribution of C-14 fluoranthene in pea plants (Pisum sativum). Environ Toxicol Chem 33(10):2308–2312

    Article  CAS  Google Scholar 

  • Zhan X, Liang X, Jiang T, Xu G (2013a) Interaction of phenanthrene and potassium uptake by wheat roots: a mechanistic model. BMC Plant Biol 13(1):1–9

    Article  Google Scholar 

  • Zhan X, Liang X, Xu G, Zhou L (2013b) Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis. Environ Pollut 179(8):294–300

    Article  CAS  Google Scholar 

  • Zhang X, Tao S, Liu W, Yang Y, Zuo Q, Liu S (2005) Source diagnostics of polycyclic aromatic hydrocarbons based on species ratios: a multimedia approach. Environ Sci Technol 39(23):9109–9114

    Article  CAS  Google Scholar 

  • Zhang J, Fan S, Du X, Yang J, Wang W, Hou H (2015) Accumulation, allocation, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in soil—Brassica chinensis system. PLoS One. doi:10.1371/journal.pone.0115863

Download references

Acknowledgements

The current study was supported by the following projects: the Natural Science Foundation Committee of China (Nos. 41390240, 41130754), the National Basic Research Program of China (No. 2014CB441101), Science and Technology Basic Special Fund (No. 2013FY111100-04), and the Undergraduate Student Research Training Program and the 111 Project (B14001) at Peking University. The authors are grateful to Yan LI and Kang SONG in College of Resources and Environment, Shanxi Agricultural University for their help on field sampling, and thanks to the Elsevier Language Editing Services for polishing the English expressions in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenXin Liu.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Dominant LMW and MMW components present in environmental media and different tissues of cabbage

• Substantial correlation of PAHs in rhizosphere soil with those in cabbage root

• Significant correlation of PAHs in outer leaf and core of cabbage with those in gaseous phase of ambient air

• Parent PAHs in cabbage tissues exhibited a concentration sequence of outer leaf > root > core.

• Close associations of PAHs in both ambient air and rhizosphere soil with those in cabbage core were presented.

Capsule

PAHs in the edible core of local cabbage were closely associated with those in ambient air and in rhizosphere soil.

Electronic supplementary material

ESM 1

(DOCX 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, G., Zhang, Y., Duan, Y. et al. Uptake of PAHs by cabbage root and leaf in vegetable plots near a large coking manufacturer and associations with PAHs in cabbage core. Environ Sci Pollut Res 24, 18953–18965 (2017). https://doi.org/10.1007/s11356-017-9548-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9548-6

Keywords

Navigation