Skip to main content
Log in

Impact of chemical leaching on permeability and cadmium removal from fine-grained soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl2, FeCl3, citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl3, Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asci Y, Nurbas M, Acikel YS (2007) Sorption of Cd(II) onto kaolin as a soil component and desorption of Cd(II) from kaolin using rhamnolipid biosurfactant. J Hazard Mater 139:50–56. doi:10.1016/j.jhazmat.2006.06.004

    Article  CAS  Google Scholar 

  • Baumann T, Fruhstorfer P, Klein T, Niessner R (2006) Colloid and heavy metal transport at landfill sites in direct contact with groundwater. Water Res 40:2776–2786. doi:10.1016/j.watres.2006.04.049

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Clemente R, Lepp N, Dickinson N (2010) Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction. Environ Pollut 158:155–160. doi:10.1016/j.envpol.2009.07.021

    Article  CAS  Google Scholar 

  • Blume H-P et al (2016) Chemical properties and processes. In: Scheffer/SchachtschabelSoil Science. Springer, Berlin, pp 123–174. doi:10.1007/978-3-642-30942-7_5

    Chapter  Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi:10.1016/j.geoderma.2004.03.005

    Article  CAS  Google Scholar 

  • Contin M, Mondini C, Leita L, De Nobili M (2007) Enhanced soil toxic metal fixation in iron (hydr)oxides by redox cycles. Geoderma 140:164–175. doi:10.1016/j.geoderma.2007.03.017

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications—a review. Eur J Soil Sci 60:590–612. doi:10.1111/j.1365-2389.2009.01142.x

    Article  CAS  Google Scholar 

  • Dikinya O, Hinz C, Aylmore G (2008) Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 146:192–200. doi:10.1016/j.geoderma.2008.05.014

    Article  Google Scholar 

  • Fedje KK, Yillin L, Stromvall AM (2013) Remediation of metal polluted hotspot areas through enhanced soil washing—evaluation of leaching methods. J Environ Manag 128:489–496. doi:10.1016/j.jenvman.2013.05.056

    Article  CAS  Google Scholar 

  • Flury M, Qiu HX (2008) Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone J 7:682–697. doi:10.2136/vzj2007.0066

    Article  Google Scholar 

  • Gao B, Saiers JE, Ryan JN (2004) Deposition and mobilization of clay colloids in unsaturated porous media. Water Resour Res 40. doi:10.1029/2004WR003189

  • Gee GW, Bauder JW (1986) Paticle-size analysis. In: Campbell GS (ed) Methods of soil analysis, part 1, 2nd edn. American Society of Agronomy, Madison, pp 383–409

    Google Scholar 

  • Gil-Diaz M, Pinilla P, Alonso J, Lobo MC (2017) Viability of a nanoremediation process in single or multi-metal(loid) contaminated soils. J Hazard Mater 321:812–819. doi:10.1016/j.jhazmat.2016.09.071

    Article  CAS  Google Scholar 

  • Houben D, Pircar J, Sonnet P (2012) Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. J Geochem Explor 123:87–94. doi:10.1016/j.gexplo.2011.10.004

    Article  CAS  Google Scholar 

  • Ilina T, Panfilov M, Buès M, Panfilova I (2008) A pseudo two-phase model of colloid transport in porous media. Transp Porous Media 71:311–329. doi:10.1007/s11242-007-9128-1

    Article  CAS  Google Scholar 

  • Kedziorek MAM, Bourg ACM (2000) Solubilization of lead and cadmium during the percolation of EDTA through a soil polluted by smelting activities. J Contam Hydrol 40:381–392. doi:10.1016/S0169-7722(99)00056-X

    Article  CAS  Google Scholar 

  • Kim J, Hyun S (2015) Nonequilibrium leaching behavior of metallic elements (Cu, Zn, As, Cd, and Pb) from soils collected from long-term abandoned mine sites. Chemosphere 134:150–158. doi:10.1016/j.chemosphere.2015.04.018

    Article  CAS  Google Scholar 

  • Levy GJ, Eisenberg H, Shainberg I (1993) Clay dispersion as related to soil properties and water permeability. Soil Sci 155:15–22. doi:10.1097/00010694-199301000-00003

    Article  Google Scholar 

  • Li YJ, Hu PJ, Zhao J, Dong CX (2015) Remediation of cadmium- and lead-contaminated agricultural soil by composite washing with chlorides and citric acid. Environ Sci Pollut Res 22:5563–5571. doi:10.1007/s11356-014-3720-z

    Article  CAS  Google Scholar 

  • Liao XY, Li Y, Yan XL (2016) Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process. J Environ Sci-China 41:202–210

    Article  Google Scholar 

  • Lin Z, Schneider A, Nguyen C, Sterckeman T (2014) Can ligand addition to soil enhance Cd phytoextraction? A mechanistic model study. Environ Sci Pollut Res 21:12811–12826. doi:10.1007/s11356-014-3218-8

    Article  CAS  Google Scholar 

  • Lu HL, Yan CL, Liu JC (2007) Low-molecular-weight organic acids exuded by mangrove (Kandelia candel (L.) Druce) roots and their effect on cadmium species change in the rhizosphere. Environ Exp Bot 61:159–166. doi:10.1016/j.envexpbot.2007.05.007

    Article  CAS  Google Scholar 

  • Makino T et al (2006) Remediation of cadmium contamination in paddy soils by washing with chemicals: selection of washing chemicals. Environ Pollut 144:2–10. doi:10.1016/j.envpol.2006.01.017

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL (ed) Methods of soil analysis, part 2, 2nd edn. American Society of Agronomy, Madison, pp 539–579

    Google Scholar 

  • Qin F, Shan XQ, Wei B (2004) Effects of low-molecular-weight organic acids and residence time on desorption of Cu, Cd, and Pb from soils. Chemosphere 57:253–263. doi:10.1016/j.chemosphere.2004.06.010

    Article  CAS  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131. doi:10.1021/es9907764

    Article  Google Scholar 

  • Sen TK, Khilar KC (2006) Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv Colloid Interf Sci 119:71–96. doi:10.1016/j.cis.2005.09.001

    Article  Google Scholar 

  • Šimůnek J, He C, Pang L, Bradford SA (2006) Colloid-facilitated solute transport in variably saturated porous media. Vadose Zone J 5:1035–1047. doi:10.2136/vzj2005.0151

    Article  Google Scholar 

  • Sirivithayapakorn S, Keller A (2003) Transport of colloids in saturated porous media: a pore-scale observation of the size exclusion effect and colloid acceleration. Water Resour Res 39. doi:10.1029/2002WR001583

  • Tampouris S, Papassiopi N, Paspaliaris I (2001) Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. J Hazard Mater 84:297–319. doi:10.1016/S0304-3894(01)00233-3

    Article  CAS  Google Scholar 

  • Torkzaban S, Bradford SA, Vanderzalm JL, Patterson BM, Harris B, Prommer H (2015) Colloid release and clogging in porous media: effects of solution ionic strength and flow velocity. J Contam Hydrol 181:161–171. doi:10.1016/j.jconhyd.2015.06.005

    Article  CAS  Google Scholar 

  • Torrens JL, Herman DC, Miller-Maier RM (1998) Biosurfactant (rhamnolipid) sorption and the impact on rhamnolipid-facilitated removal of cadmium from various soils under saturated flow conditions. Environ Sci Technol 32:776–781. doi:10.1021/es970285o

    Article  CAS  Google Scholar 

  • Wang ZY, Xu ZH, Zhao J, Pan B, Song XL, Xing BS (2014) Effects of low-molecular-weight organic acids on soil micropores and implication for organic contaminant availability. Commun Soil Sci Plan 45:1120–1132. doi:10.1080/00103624.2013.867062

    Article  CAS  Google Scholar 

  • Wennrich R, Daus B, Muller K, Stark HJ, Bruggemann L, Morgenstern P (2012) Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water—evaluation of static versus dynamic leaching. Environ Pollut 165:59–66. doi:10.1016/j.envpol.2012.02.006

    Article  CAS  Google Scholar 

  • Wikiniyadhanee R, Chotpantarat S, Ong SK (2015) Effects of kaolinite colloids on Cd2+ transport through saturated sand under varying ionic strength conditions: column experiments and modeling approaches. J Contam Hydrol 182:146–156

    Article  CAS  Google Scholar 

  • Yan J, Lazouskaya V, Jin Y (2016) Soil colloid release affected by dissolved organic matter and redox conditions. Vadose Zone J 15:10. doi:10.2136/vzj2015.02.0026

    Article  Google Scholar 

  • Zhang W, Huang H, Tan F, Wang H, Qiu R (2010) Influence of EDTA washing on the species and mobility of heavy metals residual in soils. J Hazard Mater 173:369–376. doi:10.1016/j.jhazmat.2009.08.087

    Article  CAS  Google Scholar 

  • Zhao F-J, Ma Y, Zhu Y-G, Tang Z, McGrath SP (2014) Soil contamination in China: current status and mitigation strategies. Environ Sci Technol 49:750–759. doi:10.1021/es5047099

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (nos. 51609176, 51379152, and 41471181) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (no. 2015BAD05B02). We appreciated the anonymous reviewer for the valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Wang.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Zhang, R., Huang, S. et al. Impact of chemical leaching on permeability and cadmium removal from fine-grained soils. Environ Sci Pollut Res 24, 18229–18239 (2017). https://doi.org/10.1007/s11356-017-9523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9523-2

Keywords

Navigation