Skip to main content

Advertisement

Log in

Value of biochars from Miscanthus x giganteus cultivated on contaminated soils to decrease the availability of metals in multicontaminated aqueous solutions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the sorption efficiency of eight biochars, made from Miscanthus x giganteus cultivated on contaminated agricultural soil, in aqueous solutions contaminated with metals alone or mixed with polycyclic aromatic hydrocarbons. These biochars were produced in different pyrolysis conditions (temperature, 400/600 °C; heating rate, 5/10 °C min−1; duration, 45/90 min) and compared with an uncontaminated commercialized biochar made of wood. The physicochemical characterization of the Miscanthus biochars confirmed the impact of the pyrolysis on the biochar parameters with substantial differences between the biochars in terms of pH, cation exchange capacity, and specific surface area. The sorption experiment showed higher sorption efficiency of Cd, Pb, and Zn for the Miscanthus biochars produced at 600 °C compared with the biochars produced at 400 °C when the aqueous solutions were mono- or multicontaminated. Furthermore, the desorption study showed that the sorption process was largely irreversible. Therefore, the high sorption capacity of Miscanthus biochars and the low sorption reversibility confirmed that these biochars are a suitable sorbent for metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Fattah TM, Mahmoud ME, Ahmed SB, Huff MD, Lee JW, Kumar S (2015) Biochar from woody biomass for removing metal contaminants and carbon sequestration. J Ind Eng Chem 22:103–109. doi:10.1016/j.jiec.2014.06.030

    Article  CAS  Google Scholar 

  • Afnor B (2006) NFU 44-051. Amendements organiques. Dénominations, spécifications, marquages

  • Ahmad M, Lee SS, Dou X, Mohan D, Sung JK, Yang JE, Ok YS (2012) Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour Technol 118:536–544. doi:10.1016/j.biortech.2012.05.042

    Article  CAS  Google Scholar 

  • Al-Wabel MI, Al-Omran A, El-Naggar AH, Nadeem M, Usman AR (2013) Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour Technol 131:374–379. doi:10.1016/j.biortech.2012.12.165

    Article  CAS  Google Scholar 

  • Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. doi:10.1021/ie0207919

    Article  CAS  Google Scholar 

  • Augustenborg CA, Hepp S, Kammann C, Hagan D, Schmidt O, Müller C (2012) Biochar and earthworm effects on soil nitrous oxide and carbon dioxide emissions. J Environ Qual 41:1203–1209. doi:10.2134/jeq2011.0119

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles JL (2010) Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environ Pollut 158:2282–2287. doi:10.1016/j.envpol.2010.02.003

    Article  CAS  Google Scholar 

  • Blum WE (2005) Functions of soil for society and the environment. Rev Environ Sci Biotechnol 4:75–79. doi:10.1007/s11157-005-2236-x

    Article  Google Scholar 

  • Břendová K, Tlustoš P, Száková J (2015) Can biochar from contaminated biomass be applied into soil for remediation purposes? Water Air Soil Pollut 226:193–204. doi:10.1007/s11270-015-2456-9

    Article  Google Scholar 

  • Budai A, Wang L, Gronli M, Strand LT, Antal JMJ, Abiven S, Rasse DP (2014) Surface properties and chemical composition of corncob and miscanthus biochars: effects of production temperature and method. J Agric Food Chem 62:3791–3799. doi:10.1021/jf501139f

    Article  CAS  Google Scholar 

  • Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237:105–116. doi:10.1016/j.geoderma.2014.08.010

    Article  Google Scholar 

  • Cao X, Harris W (2010) Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour Technol 101:5222–5228. doi:10.1016/j.biortech.2010.02.052

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889

    Article  CAS  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. doi:10.1016/j.chemosphere.2009.02.004

    Article  CAS  Google Scholar 

  • Chen X, Chen G, Chen L, Chen Y, Lehmann J, McBride MB, Hay AG (2011) Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour Technol 102:8877–8884. doi:10.1016/j.biortech.2011.06.078

    Article  CAS  Google Scholar 

  • Douay F, Pruvot C, Waterlot C, Fritsch C, Fourrier H, Loriette A, Scheifler R (2009) Contamination of woody habitat soils around a former lead smelter in the north of France. Sci Total Environ 407:5564–5577. doi:10.1016/j.scitotenv.2009.06.015

    Article  CAS  Google Scholar 

  • Doumer ME, Rigol A, Vidal M, Mangrich AS (2016) Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environ Sci Pollut Res 23:2684–2692. doi:10.1007/s11356-015-5486-3

    Article  CAS  Google Scholar 

  • EC-European Commission (2001). Green paper—towards a European strategy for the security of energy supply. European Commission DG Energy and Transport, COM (2000), 769

  • Evangelou MW, Brem A, Ugolini F, Abiven S, Schulin R (2014) Soil application of biochar produced from biomass grown on trace element contaminated land. J Environ Manag 146:100–106. doi:10.1016/j.jenvman.2014.07.046

    Article  CAS  Google Scholar 

  • Frišták V, Pipíška M, Lesný J, Soja G, Friesl-Hanl W, Packová A (2015) Utilization of biochar sorbents for Cd2+, Zn2+, and Cu2+ ions separation from aqueous solutions: comparative study. Environ Monit Assess 187(1):4093–4108. doi:10.1007/s10661-014-4093-y

    Article  Google Scholar 

  • Hmid A, Mondelli D, Fiore S, Fanizzi FP, Al Chami Z, Dumontet S (2014) Production and characterization of biochar from three-phase olive mill waste through slow pyrolysis. Biomass Bioenergy 71:330–339. doi:10.1016/j.biombioe.2014.09.024

    Article  CAS  Google Scholar 

  • Hodgson E, Lewys-James A, Ravella SR, Thomas-Jones S, Perkins W, Gallagher J (2016) Optimisation of slow-pyrolysis process conditions to maximise char yield and heavy metal adsorption of biochar produced from different feedstocks. Bioresour Technol 214:574–581. doi:10.1016/j.biortech.2016.05.009

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013a) Beneficial effects of biochar application to contaminated soils on the bioavailability of cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) Biomass Bioenergy 57:196–204. doi:10.1016/j.biombioe.2013.07.019

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013b) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457. doi:10.1016/j.chemosphere.2013.03.055

    Article  CAS  Google Scholar 

  • Inyang M, Gao B, Yao Y, Xue Y, Zimmerman AR, Pullammanappallil P, Cao X (2012) Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour Technol 110:50–56. doi:10.1016/j.biortech.2012.01.072

    Article  CAS  Google Scholar 

  • Janus A, Pelfrêne A, Heymans S, Deboffe C, Douay F, Waterlot C (2015) Elaboration, characteristics and advantages of biochars for the management of contaminated soils with a specific overview on Miscanthus biochars. J Environ Manag 162:275–289. doi:10.1016/j.jenvman.2015.07.056

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kılıç M, Kırbıyık Ç, Çepelioğullar Ö, Pütün AE (2013) Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl Surf Sci 283:856–862. doi:10.1016/j.apsusc.2013.07.033

    Article  Google Scholar 

  • Kim WK, Shim T, Kim YS, Hyun S, Ryu C, Park YK, Jung J (2013) Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. Bioresour Technol 138:266–270. doi:10.1016/j.biortech.2013.03.186

    Article  CAS  Google Scholar 

  • Kim M-S, Min H-G, Koo N, Park J, Lee SH, Bak GI, Kim JG (2014) The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments. J Environ Manag 146:124–130. doi:10.1016/j.jenvman.2014.07.001

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Senturk E, Ince M (2005) Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Bioresour Technol 96:1518–1521. doi:10.1016/j.biortech.2004.12.005

    Article  CAS  Google Scholar 

  • Kołodyńska D, Wnętrzak R, Leahy JJ, Hayes MHB, Kwapiński W, Hubicki Z (2012) Kinetic and adsorptive characterization of biochar in metal ions removal. Chem Eng J 197:295–305. doi:10.1016/j.cej.2012.05.025

    Article  Google Scholar 

  • Komnitsas K, Zaharaki D, Pyliotis I, Vamvuka D, Bartzas G (2015) Assessment of pistachio shell biochar quality and its potential for adsorption of heavy metals. Waste Biomass Valoriz 6:805–816. doi:10.1007/s12649-015-9364-5

    Article  CAS  Google Scholar 

  • Kong H, He J, Gao Y, Wu H, Zhu X (2011) Cosorption of phenanthrene and mercury(II) from aqueous solution by soybean stalk-based biochar. J Agric Food Chem 59:12116–12123. doi:10.1021/jf202924a

    Article  CAS  Google Scholar 

  • Lee Y, Eum PRB, Ryu C, Park YK, Jung JH, Hyun S (2013) Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresour Technol 130:345–350. doi:10.1016/j.biortech.2012.12.012

    Article  CAS  Google Scholar 

  • Lehmann J, Joseph S (2009) Biochar for environmental management: science and technology. Earthscan, Sterling

    Google Scholar 

  • Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572. doi:10.1007/s11368-013-0738-7

    Article  CAS  Google Scholar 

  • Lewandowski I, Scurlock JM, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass Bioenergy 25:335–361. doi:10.1016/S0961-9534(03)00030-8

    Article  Google Scholar 

  • Li J, Li Y, Wu Y, Zheng M (2014) A comparison of biochars from lignin, cellulose and wood as the sorbent to an aromatic pollutant. J Hazard Mater 280:450–457. doi:10.1016/j.jhazmat.2014.08.033

    Article  CAS  Google Scholar 

  • Martin TA, Ruby MV (2004) Review of in situ remediation technologies for lead, zinc, and cadmium in soil. Remediat J 14:35–53. doi:10.1002/rem.20011

    Article  Google Scholar 

  • Mohan D, Sarswat A, Ok YS, Pittman CU (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour Technol 160:191–202. doi:10.1016/j.biortech.2014.01.120

    Article  CAS  Google Scholar 

  • Novak JM, Lima I, Xing B, Gaskin JW, Steiner C, Das KC, Schomberg H (2009) Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 3:195–206

    CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Mench M, Douay F (2014) Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag 143:123–134. doi:10.1016/j.jenvman.2014.04.027

    Article  CAS  Google Scholar 

  • Nsanganwimana F, Pourrut B, Waterlot C, Louvel B, Bidar G, Labidi S, Douay F (2015) Metal accumulation and shoot yield of Miscanthus x giganteus growing in contaminated agricultural soils: insights into agronomic practices. Agric Ecosyst Environ 213:61–71. doi:10.1016/j.agee.2015.07.023

    Article  CAS  Google Scholar 

  • OECD (2000) Guideline TG 106. OECD Guideline for the testing of chemicals. Adsorption–desorption using a batch equilibrium method

  • Onay O (2007) Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process Technol 88:523–531. doi:10.1016/j.fuproc.2007.01.001

    Article  CAS  Google Scholar 

  • Park J-H, Cho J-S, Ok YS, Kim SH, Kang SW, Choi IW, Seo DC (2015) Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment. J Environ Sci Health A 50:1194–1204. doi:10.1080/10934529.2015.1047680

    Article  CAS  Google Scholar 

  • Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC (2016) Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere 142:77–83. doi:10.1016/j.chemosphere.2015.05.093

    Article  CAS  Google Scholar 

  • Prendergast-Miller MT, Duvall M, Sohi SP (2014) Biochar-root interactions are mediated by biochar nutrient content and impacts on soil nutrient availability: biochar-root interactions. Eur J Soil Sci 65:173–185. doi:10.1111/ejss.12079

    Article  CAS  Google Scholar 

  • Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G (2012) Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manag 109:61–69. doi:10.1016/j.jenvman.2012.04.047

    Article  CAS  Google Scholar 

  • Rodríguez-Vila A, Covelo EF, Forján R, Asensio V (2015) Recovering a copper mine soil using organic amendments and phytomanagement with Brassica juncea L. J Environ Manag 147:73–80. doi:10.1016/j.jenvman.2014.09.011

    Article  Google Scholar 

  • Schimmelpfennig S, Müller C, Grünhage L, Koch C, Kammann C (2014) Biochar, hydrochar and uncarbonized feedstock application to permanent grassland—effects on greenhouse gas emissions and plant growth. Agric Ecosyst Environ 191:39–52. doi:10.1016/j.agee.2014.03.027

    Article  CAS  Google Scholar 

  • Shinogi Y, Kanri Y (2003) Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresour Technol 90:241–247. doi:10.1016/S0960-8524(03)00147-0

    Article  CAS  Google Scholar 

  • Tan X, Liu Y, Zeng G, Wang X, Hu X, Gu Y, Yang Z (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. doi:10.1016/j.chemosphere.2014.12.058

    Article  CAS  Google Scholar 

  • Tang J, Lv H, Gong Y, Huang Y (2015) Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresour Technol 196:355–363. doi:10.1016/j.biortech.2015.07.047

    Article  CAS  Google Scholar 

  • Trakal L, Šigut R, Šillerová H, Faturíková D, Komárek M (2014) Copper removal from aqueous solution using biochar: effect of chemical activation. Arab J Chem 7:43–52. doi:10.1016/j.arabjc.2013.08.001

    Article  CAS  Google Scholar 

  • Verheijen F, Jeffery S, Bastos AC, van der Velde M, Diafas I (2010) Biochar application to soils. A critical scientific review of effects on soil properties, processes, and functions. EUR, 24099, 162. doi: 10.2788/472

  • Yu XY, Ying GG, Kookana RS (2009) Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere 76:665–671. doi:10.1016/j.chemosphere.2009.04.001

    Article  CAS  Google Scholar 

  • Zhang X, He L, Sarmah AK, Lin K, Liu Y, Li J, Wang H (2014) Retention and release of diethyl phthalate in biochar-amended vegetable garden soils. J Soils Sediments 14:1790–1799. doi:10.1007/s11368-014-0929-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Hauts-de-France Regional Council and Bpifrance for the financial support of this research and the CIRAD for the production and characterization of the biochars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adeline Janus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Zhihong Xu

Electronic supplementary material

ESM 1

(DOCX 203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janus, A., Pelfrêne, A., Sahmer, K. et al. Value of biochars from Miscanthus x giganteus cultivated on contaminated soils to decrease the availability of metals in multicontaminated aqueous solutions. Environ Sci Pollut Res 24, 18204–18217 (2017). https://doi.org/10.1007/s11356-017-9520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9520-5

Keywords

Navigation