Skip to main content
Log in

Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants

  • Chemistry, Activity and Impact of Plant Biocontrol products
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aazza S, Lyoussi B, Miguel M (2011) Antioxidant activity of some Morrocan hydrosols. J Med Plants Res 5:6688–6696

    Google Scholar 

  • Aazza S, Lyoussi B, Miguel M (2012) Antioxidant activity of eight hydrosols from Morocco. Asian J Plant Sci 11:137–142

    Article  CAS  Google Scholar 

  • Andrés MF, González-Coloma A, Sanz J, Burillo J, Sainz P (2012) Nematicidal activity of essential oils: a review. Phytochem Rev 11:371–390

    Article  Google Scholar 

  • Baydar H, Kineci S (2009) Scent composition of essential oil, concrete, absolute and hydrosol from Lavandin (Lavandula × intermedia Emeric ex Loisel.) J Essen Oil Bear Plants 12:131–136

    Article  CAS  Google Scholar 

  • Boyraz N, Özcan M (2005) Antifungal effect of some spice hydrosols. Fitoterapia 76:661–665

    Article  Google Scholar 

  • Burillo J, Garcıa-Vallejo MC (2003) Investigacion y Experimentacion de Plantas Aromaticas y Medicinales en Aragon. Cultivo, Transformacion y Analıtica. Ed. propagation activities of thyme red and white. Gobierno de Aragon

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 14:142–143

    Google Scholar 

  • Choi IH, Kim J, Shin SC, Park IK (2007) Nematicidal activity of monoterpenoids against the pine wood nematode (Bursaphelenchus xylophilus). Russ J Nematol 15:35–40

    Google Scholar 

  • Ferley J, Poutignat N, Azzopard Y, Balducci F (1988) Aromathérapie préventive des surinfections chez les bronchiteux chroniques: evaluation statistique en milieu institutionel: contre placebo. Phytothérapie 24:8

    Google Scholar 

  • García-Risco MR, Vicente G, Reglero G, Fornari T (2011) Fractionation of thyme (Thymus vulgaris L.) by supercritical fluid extraction and chromatography. J Supercrit Fluids 55:949–954

    Article  Google Scholar 

  • Ghorbani R, Wilcockson S, Koochek A, Leifert C (2008) Soil management for sustainable crop disease control: a review. Environ Chem Lett 6:149–162

    Article  CAS  Google Scholar 

  • Gonçalves MJ, Cruz MT, Cavaleiro C, Lopes MC, Salgueiro L (2010) Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris. Ind Crop Prod 32:70–75

    Article  Google Scholar 

  • González-Coloma A, Delgado F, Rodilla JM, Silva L, Sanz J, Burillo J (2011) Chemical and biological profiles of Lavandula luisieri essential oils from western Iberia Peninsula populations. Biochem Syst Ecol 39:1–8

    Article  Google Scholar 

  • Höferl M, Buchbauer G, Jirovetz L, Schmidt E, Stoyanova A, Denkova Z et al (2009) Correlation of antimicrobial activities of various essential oils and their main aromatic volatile constituents. J Essent Oil Res 21:459–463

    Article  Google Scholar 

  • Hussey RS, Barker KR (1973) A comparison of methods of collecting inocula of Meloidogyne spp, including a new technique. Plant Dis 57:1025–1028

    Google Scholar 

  • Isman MB, Miresmailli S, Machial C (2011) Commercial opportunities for pesticides based on plant EOs in agriculture, industry and consumer products. Phytochem Rev 10:197–204

    Article  CAS  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    Article  Google Scholar 

  • Jordán MJ, Martínez RM, Martínez C, Moñino I, Sotomayor JA (2009) Polyphenolic extract and essential oil quality of Thymus zygis ssp. gracilis shrubs cultivated under different watering levels. Ind Crop Prod 29:145–153

    Article  Google Scholar 

  • Joy PP, Thomas J, Mathew S, Jose G, Joseph J (2001) Aromatic plants. In: Bose TK, Kabir J, Das P, Joy PP (eds) Tropical horticulture, vol 2. Naya Prokash, Calcutta, pp 633–733

    Google Scholar 

  • Julio LF, Barrero AF, Herrador del Pino MM, Arteaga JF, Burillo J, Andres MF, Díaz CE, González-Coloma A (2016) Phytotoxic and nematicidal components of Lavandula luisieri. J Nat Prod 2:261–266

    Article  Google Scholar 

  • Julio LF, González-Coloma A, Burillo J, Diaz CE, Andrés MF (2017) Nematicidal activity of the hydrolate byproduct from the semi industrial vapor pressure extraction of domesticated Artemisia absinthium against Meloidogyne javanica. Crop Prot 94:33–37

    Article  CAS  Google Scholar 

  • Lavoine-Hanneguelle S, Casabianca H (2004) New compounds from the essential oil and absolute of Lavandula luisieri L. J Essent Oil Res 16:445–448

    Article  CAS  Google Scholar 

  • Lis-Balchin M, Steyrl H, Krenn E (2003) The comparative effect of novel Pelargonium essential oils and their corresponding hydrosols as antimicrobial agents in a model food system. Phytother Res 17:60–65

    Article  CAS  Google Scholar 

  • Mookherjee BD, Wilson RA, Trenkle RW, Zampino MJ, Sands KP (1989) New dimensions in flavor research. ACS Symp Ser 388:176–187

    Article  CAS  Google Scholar 

  • Ntalli NG, Ferrari F, Giannakou I, Menkissoglu-Spiroudi U (2010) Phytochemistry and nematicidal activity of the EOs from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J Agric Food Chem 58:7856–7863

    Article  CAS  Google Scholar 

  • Ozcan MM, Arslan D, Aydar AO (2008) The use of the oregano (Origanum vulgare L.) essential oil and hydrosol in green olive fermentation. Braz Arch Biol Technol 51:601–605

    Article  CAS  Google Scholar 

  • Paolini J, Leandri C, Desjobert J-M, Barboni T, Costa J (2008) Comparison of liquid-liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species. J Chromatogr A 1193:37–49

    Article  CAS  Google Scholar 

  • Pombal S, Rodrigues CF, Araújo JP, Rocha PM, Rodilla JM, Diez D, Granja AP, Gomes AC, Silva LA (2016) Antibacterial and antioxidant activity of Portuguese Lavandula luisieri (Rozeira) Rivas-Martinez and its relation with their chemical composition. Springer Plus 5:1711

    Article  Google Scholar 

  • Prakash V (1990) Leafy spices. CRC Press, Boca Raton

    Google Scholar 

  • Prusinowska R, Śmigielski K, Stobiecka A, Kunicka-Styczyńska A (2016) Hydrolates from lavender (Lavandula angustifolia)—their chemical composition as well as aromatic, antimicrobial and antioxidant properties. Nat Prod Res 30:386–393

    Article  CAS  Google Scholar 

  • Rota MC, Herrera A, Martinez RM, Sotomayor JA, Jordan MJ (2008) Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19:681–687

    Article  CAS  Google Scholar 

  • Sağdiç O, Özcan M (2003) Antibacterial activity of Turkish spice hydrosols. Food Control 14:141–143

    Article  Google Scholar 

  • Schneider-Orelli O (1947) Entomologisches Praktikum: Einführung in die landund forstwirtschaftliche. Insektenkunde Sauerländer & Co, Aarau

    Google Scholar 

  • Soliman KM, Badeaa RI (2002) Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem Toxicol 40:1669–1675

    Article  CAS  Google Scholar 

  • Sotomayor JA, Martinez RM, Garcia AJ, Jordan MJ (2004) Thymus zygis subsp. Gracilis: watering level effect on phytomass production and essential oil quality. J Agric Food Chem 52:5418–5424

    Article  CAS  Google Scholar 

  • Thompson JD, Chalchat J-C, Michet A, Linhart YB, Ehlers B (2003) Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol 29:859–880

    Article  CAS  Google Scholar 

  • Ulusoy S, Bosgelmez-Tinaz G, Secilmis-Canbay H (2009) Tocopherol, carotene, phenolic contents and antibacterial properties of rose essential oil, hydrosol and absolute. Curr Microbiol 59:554–558

    Article  CAS  Google Scholar 

  • Usano-Alemany J, Herraiz D, Cuadrado J, de Benito B, Sánchez O, Palá-Paúl J (2011) Ecological production of lavenders in Cuenca province (Spain). A study of yield production and quality of the essential oils. Bot Complutensis 35:147–152

    Google Scholar 

  • Verdejo-Lucas S, Talavera M, Andrés MF (2012) Virulence response to the Mi. 1 gene of Meloidogyne populations from tomato in greenhouses. Crop Prot 39:97–105

    Article  CAS  Google Scholar 

  • Zuzarte M, Gonçalves MJ, Cruz MT, Cavaleiro C, Canhoto J, Vaz S, Pinto E, Salgueiro L (2012) Lavandula luisieri essential oil as a source of antifungal drugs. Food Chem 135:1505–1510

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants CTQ2012-38219-C03-01 and CTQ2015-64049-C3-1-R (MINECO/FEDER) (Spain), and JAE-CSIC (pre-doctoral fellowship to L.F. Julio). We thank S. Cruz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Fe Andrés.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrés, M.F., González-Coloma, A., Muñoz, R. et al. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants. Environ Sci Pollut Res 25, 29834–29840 (2018). https://doi.org/10.1007/s11356-017-9429-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9429-z

Keywords

Navigation