Skip to main content
Log in

Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) is a widespread soil and groundwater pollutant and clean-up is often problematic and expensive. Phytoremediation may be a cost-effective solution at some sites. This study investigates TCE degradation by willows (S. viminalis) and willows inoculated with three strains of B. cepacia (301C, PR1-31 and VM1330-pTOM), using chloride formation as an indicator of dehalogenation. Willows were grown in non-sterile, hydroponic conditions for 3 weeks in chloride-free nutrient solution spiked with TCE. TCE was added weekly due to rapid loss by volatilization. Chloride and TCE in solution were measured every 2–3 days and chloride and metabolite concentrations in plants were measured at test termination. Based on transpiration, no tree toxicity of TCE exposure was observed. However, trees grown in chloride-free solution showed severely inhibited transpiration. No or very little chloride was formed during the test, and levels of chloride in TCE-exposed trees were not elevated. Chloride concentrations in chloride containing TCE-free nutrient solution doubled within 23 days, indicating active exclusion of chloride by root cell membranes. Only traces of TCE-metabolites were detected in plant tissue. We conclude that TCE is not, or to a limited extent (less than 3%), aerobically degraded by the willow trees. The three strains of B. cepacia did not enhance TCE mineralization. Future successful application of rhizo- and phytodegradation of TCE requires measures to be taken to improve the degradation rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams P (1991) Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. J Hortic Sci 66:201–207

    Article  CAS  Google Scholar 

  • Anderson TA, Walton BT (1995) Comparative fate of [14C] trichloroethylene in the root zone of plants from a former solvent disposal site. Environ Toxicol Chem 14:2041–2047

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Baduru KK, Trapp S, Burken JG (2008) Direct measurement of VOC diffusivities in tree tissues: impacts on tree-based phytoremediation. Environ Sci Technol 42:1268–1275

    Article  CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  Google Scholar 

  • Blank O-H (2009) Is there a need for the use of chloride-free mineral fertilizers for currant as a common berry fruit. Dissertation, University of Hohenhiem

  • Burken J (2004) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. John Wiley & Sons, New Jersey, pp 59–84

    Google Scholar 

  • Cakmak I, Marschner H (1992) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol 98(4):1222–1227

    Article  CAS  Google Scholar 

  • Cello FD, Bevivino A, Chiarini L, Paffetti D, Tabacchioni S, Dalmastri C (1997) Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant stages. Appl Environ Microbiol 63:4485–4493

    Google Scholar 

  • Chappell J (1997) Phytoremediation of TCE using populus. Status report prepared for the US EPA Technology Innovation Office under a National Network of Environmental Management Studies Fellowship. https://clu-in.org/download/studentpapers/phytotce.pdf. Accessed 4 July 2016

  • Chard BK, Doucette WJ, Chard JK, Bugbee B, Gorder K (2006) Trichloroethylene uptake by apple and peach trees and transfer to fruit. Environ Sci Technol 40:4788–4793

    Article  CAS  Google Scholar 

  • Clausen LPW, Karlson UG, Trapp S (2015) Phytotoxicity of sodium fluoride and uptake of fluoride in willow trees. Int J Phytoremediat 17:369–376

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Dev-Pl 29:207–212

    Article  Google Scholar 

  • Danish Natural Environment Portal (DNEP) (Danmarks Miljøportal) (2016) Database of V1 and V2 registered sites in Denmark. Written communication. Information available at inquiry

  • Deavers K, Macek T, Karlson UG, Trapp S (2010) Removal of 4-chlorobenzoic acid from spiked hydroponic solution by willow trees (Salix viminalis). Environ Sci Pollut Res 17:1355–1361

    Article  CAS  Google Scholar 

  • Dietz AC, Schnoor JL (2001) Phytotoxicity of chlorinated aliphatics to hybrid poplar (Populus deltoides× nigra DN34). Environ Toxicol Chem 20:389–393

    Article  CAS  Google Scholar 

  • Folsom BR, Chapman PJ, Pritchard PH (1990) Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl Environ Microbiol 56:1279–1285

    CAS  Google Scholar 

  • Fox BG, Borneman JG, Wackett LP, Lipscomb JD (1990) Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry-US 29:6419–6427

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Glensvig D, Buch C, Abildgaard A, Mortensen P (2008) Mapping of adjuvants and additives at Danish dry cleaners past and present. Translated from: Kortlægning af hjælpe-og tilsætningsstoffer i danske renserier før og nu. The Danish environmental protection agency

  • Grieve AM, Walker RR (1983) Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. Aust J Agric Res 34:133–143

    Article  CAS  Google Scholar 

  • Hoekstra EJ, de Leer EW (1993) Natural production of chlorinated organic compounds in soil. Contam Soils 2:215–224

    Article  Google Scholar 

  • International Organization for Standardization (ISO) (1997) Water quality—fresh water algal growth test with Scenedesmus subspicatus and Raphidocelis subcapitata. ISO Standard 8692. International Organization for Standardization, Geneve

  • James CA, Xin G, Doty SL, Muiznieks I, Newman L, Strand SE (2009) A mass balance study of the phytoremediation of perchloroethylene-contaminated groundwater. Environ Pollut 157:2564–2569

    Article  Google Scholar 

  • Juuti S, Hoekstra EJ (1998) The origins and occurrence of trichloroacetic acid. Atmos Environ 32:3059–3060

    Article  CAS  Google Scholar 

  • Kang JW, Doty SL (2014) Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Can J Microbiol 60:487–490

    Article  CAS  Google Scholar 

  • Larsen M, Burken J, Macháčková J, Karlson UG, Trapp S (2008) Using tree core samples to monitor natural attenuation and plume distribution after a PCE spill. Environ Sci Technol 42:1711–1717

    Article  CAS  Google Scholar 

  • Larsen M, Trapp S, Pirandello A (2004) Removal of cyanide by woody plants. Chemosphere 54:325–333

    Article  CAS  Google Scholar 

  • Larsen M, Ucisik AS, Trapp S (2005) Uptake, metabolism, accumulation and toxicity of cyanide in willow trees. Environ Sci Technol 39:2135–2142

    Article  CAS  Google Scholar 

  • Lewis TE, Wolfinger TF, Barta ML (2004) The ecological effects of trichloroacetic acid in the environment. Environ Int 30:1119–1150

    Article  CAS  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE, Lidstrom ME, Tyndall RL, Gilmer PJ (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl Environ Microbiol 54:951–956

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, pp 396–404

    Google Scholar 

  • McCarty PL (2010) Groundwater contamination by chlorinated solvents: history, remediation technologies and strategies. In: Stroo HF, Ward CH (eds) In situ remediation of chlorinated solvent plumes. Springer, New York, pp 1–4

    Google Scholar 

  • McCutcheon SC, Schnoor JL (2004) Phytoremediation: transformation and control of contaminants. John Wiley & Sons, New Jersey

    Google Scholar 

  • Munakata-Marr J, McCarty PL, Shields MS, Reagin M, Francesconi SC (1996) Enhancement of trichloroethylene degradation in aquifer microcosm bioaugmented with wild type and genetically altered Burkholderia (Pseudomonas) cepacia G4 and PR1. Environ Sci Technol 30:2045–2052

    Article  CAS  Google Scholar 

  • Newman L, Strand S, Duffy J, Ekuan G, Raszaj M, Shurtleff B, Wilmoth J, Heilman P, Gordon M (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31:1062–1067

    Article  CAS  Google Scholar 

  • Newman LA, Wang X, Muiznieks IA, Ekuan G, Ruszaj M, Cortellucci R, Domroes D, Karscig G, Newman T, Crampton RS, Hashmonay RA, Yost MG, Heilman PE, Duffy J, Gordon MP, Strand SE (1999) Remediation of trichloroethylene in an artificial aquifer with trees: a controlled field study. Environ Sci Technol 33:2257–2265

    Article  CAS  Google Scholar 

  • Nielsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51:655–665

    Article  Google Scholar 

  • Orchard BJ, Doucette WJ, Chard JK, Bugbee B (2000) Uptake of trichloroethylene by hybrid poplar trees grown hydroponically in flow-through plant growth chambers. Environ Toxicol Chem 19:895–903

    Article  CAS  Google Scholar 

  • Pan MJ, Rademan S, Kunert K, Hastings JW (1997) Ultrastructural studies on the colonization of banana tissue and Fusarium oxysporum f. sp. Cubense race 4 by the endophytic bacterium Burkholderia cepacia. J Phytopathol 145:479–486

    Article  Google Scholar 

  • Riley D, Barber SA (1971) Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci Soc Am J 35:301–306

    Article  CAS  Google Scholar 

  • Schnoor JL, Licht LL, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schöftner P, Watzinger A, Holzknecht P, Wimmer B, Reichenauer TG (2016) Transpiration and metabolisation of TCE by willow plants—a pot experiment. Int J Phytorem 18:686–692

    Article  Google Scholar 

  • Shang TQ, Doty SL, Wilson AM, Howald WN, Gordon MP (2001) Trichloroethylene oxidative metabolism in plants: the trichloroethanol pathway. Phytochemistry 58:1055–1065

    Article  CAS  Google Scholar 

  • Shields MS., Francesconi SC (1996) Microbial degradation of trichloroethylene, dichloroethylenes and aromatic pollutants. US patent office, pat. Nr. US5543317 A.

  • Stomp AM, Han KH, Wilbert S, Gordon MP (1993) Genetic improvement of tree species for remediation of hazardous wastes. In Vitro Dev-Pl 29:227–232

    Article  Google Scholar 

  • Trapp SAJ, Christiansen H (2003) Phytoremediation of cyanide-polluted soils. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. John Wiley & Sons, New Jersey, pp 829–862

    Chapter  Google Scholar 

  • Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects. Environ Exp Bot 64:1–7

    Article  CAS  Google Scholar 

  • Trapp S, Karlson U (2001) Aspects of phytoremediation of organic pollutants. J Soils Sediments 1:37–43

    Article  CAS  Google Scholar 

  • Trapp S, Zambrano KC, Kusk KO, Karlson U (2000) A phytotoxicity test using transpiration of willows. Arch Environ Contam Toxicol 39:154–160

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S (2006) Uptake, removal, accumulation, and phytotoxicity of phenol in willow trees (Salix viminalis). Environ Toxicol Chem 25:2455–2460

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S (2008) Uptake, removal, accumulation, and phytotoxicity of 4-chlorophenol in willow trees. Arch Environ Contam Toxicol 54:619–627

    Article  CAS  Google Scholar 

  • Ucisik AS, Trapp S, Kusk KO (2007) Uptake, accumulation, phytotoxicity, and removal of 2,4-dichlorophenol in willow trees. Environ Toxicol Chem 26:1165–1171

    Article  CAS  Google Scholar 

  • Waters EM, Gerstner HB, Huff JE (1977) Trichloroethylene. I. An overview. J Toxicol Environ Health A 2:671–707

    Article  CAS  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnership take the challenge. Curr Opin Plant Biol 20:248–254

    CAS  Google Scholar 

  • Wittlingerova Z, Machackova J, Petruzelkova A, Trapp S, Vlk K, Zima J (2013) One-year measurements of chloroethenes in tree cores and groundwater at the SAP Mimoň site, northern bohemia. Environ Sci Pollut Res 20:834–847

    Article  CAS  Google Scholar 

  • Xiao Y, Sun J, Liu F, Xu T (2016) Effects of salinity and sulphide on seed germination of three coastal plants. Flora 218:86–91

    Article  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Chen L (2007) Effect of temperature on the uptake and metabolism of cyanide by weeping willows. Int J Phytoremediation 9:243–255

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Hu H (2005) The effect of temperature on the rate of cyanide metabolism of two woody plants. Chemosphere 59:1099–1104

    Article  CAS  Google Scholar 

  • Yu XZ, Trapp S, Zhou PH, Wang C, Zhou X (2004) Metabolism of cyanide by Chinese vegetation. Chemosphere 56:121–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor William J. Doucette, UWRL Associate Director, Utah State University, for valuable comments, suggestions, English proof reading, and for analyzing the TCE metabolite samples. Strains B. cepacia 301C and PR1-31 were kindly provided by S.C. Francesconi, and strain B. cepacia VM1330-pTOM by B. Borremans. We thank Susanne Kruse and Hanne Bøggild for assistance in the laboratory. Lastly, the author’s gratitude goes to the unknown reviewers who provided a lot of constructive comments which improved the manuscript considerably.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lauge Peter Westergaard Clausen or Stefan Trapp.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 133 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clausen, L.P.W., Broholm, M.M., Gosewinkel, U. et al. Test of aerobic TCE degradation by willows (Salix viminalis) and willows inoculated with TCE-cometabolizing strains of Burkholderia cepacia . Environ Sci Pollut Res 24, 18320–18331 (2017). https://doi.org/10.1007/s11356-017-9420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9420-8

Keywords

Navigation