Toxicity against Drosophila melanogaster and antiedematogenic and antimicrobial activities of Alternanthera brasiliana (L.) Kuntze (Amaranthaceae)

  • Henrique Douglas Melo Coutinho
  • Cícera Datiane de Morais Oliveira-Tintino
  • Saulo Relison Tintino
  • Raimundo Luiz Silva Pereira
  • Thiago Sampaio de Freitas
  • Maria Arlene Pessoa da Silva
  • Jeferson Luis Franco
  • Francisco Assis Bezerra da Cunha
  • José Galberto Martins da Costa
  • Irwin Rose Alencar de Menezes
  • Aline Augusti Boligon
  • João Batista Teixeira da Rocha
  • Maria Ivaneide Rocha
  • Joycy Francely Sampaio dos Santos
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

Bioactive phytocompounds are studied by several bioactivities demonstrated, as their cytotoxic effects. The aim of this work was to evaluate the phytochemical profile, the toxic effect using the Drosophila melanogaster animal model and the anti-inflammatory and antimicrobial effect of the Alternanthera brasiliana (EEAB) ethanol extract. The phytochemical profile was performed using HPLC. The cytotoxic effect was evaluated in vivo using D. melanogaster. The anti-inflammatory effect was determined by neurogenic and antiedematogenic assays, and the antimicrobial activity was assayed using a microdilution method to determine the minimum inhibitory concentration (MIC) of the EEAB alone and in association with antibiotics. The main compound identified on the EEAB was luteolin (1.93%). Its cytotoxic effect was demonstrated after 24 h in the concentrations of 10, 20 and 40 mg/mL. The extract demonstrated an antiedematogenic effect, with a reduction of the edema between 35.57 and 64.17%. The MIC of the extract was ≥1.024 μg/mL, thus being considered clinically irrelevant. However, when the EEAB was associated with gentamicin, a synergism against all bacterial strains assayed was observed: Staphylococcus aureus (SA10), Escherichia coli (EC06) and Pseudomonas aeruginosa (PA24). Due to these results, the EEAB demonstrated a low toxicity in vivo and anti-inflammatory and synergistic activities. These are promising results, mainly against microbial pathogens, and the compounds identified can be a source of carbon backbones for the discovery and creation of new drugs.

Keywords

Mus musculus Medicinal plants Modulation of antibiotic activity Phenolic compounds Drosophila melanogaster Antiedematogenic 

Notes

Compliance with ethical standards

The present study was submitted to the Animal Experimentation and Use Committee (CEUA) of the Regional University of Cariri (URCA) and approved under the protocol number 15/2012.

References

  1. Barbosa Filho VM, Waczuk EP, Kamdem JP, Abolaji AO, Lacerda SR, Costa JGM, Menezes IRA, Boligon AA, Athayde ML, Rocha JBT, Posser T (2014) Phytochemical constituents, antioxidant activity, cytotoxicity andosmotic fragility effects of Caju (Anacardium microcarpum). Ind Crops Prod 55:280–288Google Scholar
  2. Barua CC, Talukdar A, Begum SA et al (2009) Antinociceptive activity of methanolic extract of leaves of Alternanthera brasiliana Kuntz. In animal models of nociception. Pharmacol Online 3:49Google Scholar
  3. Barua CC, Ara Begum S, Talukdar A et al (2012) Influence of Alternanthera brasiliana (L.) Kuntze on altered antioxidant enzyme profile during cutaneous wound healing in immunocompromised ratsGoogle Scholar
  4. Barua CC, Begum SA, Barua AG et al (2013a) Anxiolytic and anticonvulsant activity of methanol extract of leaves of Alternanthera brasiliana (L.) Kuntze (Amaranthaceae) in laboratory animalsGoogle Scholar
  5. Barua CC, Begum SA, Pathak DC, Bora RS (2013b) Wound healing activity of Alternanthera brasiliana Kuntze and its anti oxidant profiles in experimentally induced diabetic rats. J Appl Pharm Sci 3:161Google Scholar
  6. Boligon AA, Kubiça TF, Mario DN, Brum TF, Piana M, Weiblen R, Lovato L, Alves SH, Santos RCV, Alves CFS, Athayde ML (2013) Antimicrobial and antiviral activity-guided fractionation from Scutia buxifolia Reissek extracts. Acta Physiol Plant 35: 2229–2239Google Scholar
  7. Chiu IM, Heesters BA, Ghasemlou N et al (2013) Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501:52–57CrossRefGoogle Scholar
  8. CLSI Clinical and Laboratory Standards Institute (2008) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, Tenth Edit. NCCLS, Wayne, Pennsylvania. pp. 120–126Google Scholar
  9. Coderre TJ, Abbott FV, Sawynok J (2013) Formalin test. In: Encyclopedia of pain. Springer, pp 1303–1308Google Scholar
  10. David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14:299–315CrossRefGoogle Scholar
  11. De Carvalho Nilo Bitu V, De Carvalho Nilo Bitu V, Matias EFF et al (2015) Ethnopharmacological study of plants sold for therapeutic purposes in public markets in Northeast Brazil. J Ethnopharmacol 172:265–272. doi: 10.1016/j.jep.2015.06.022 CrossRefGoogle Scholar
  12. De Kraker MEA, Davey PG, Grundmann H, Group BS (2011) Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: estimating the burden of antibiotic resistance in Europe. PLoS Med 8:e1001104CrossRefGoogle Scholar
  13. de Santana Aquino DF, Piccinelli AC, Soares FLP et al (2015) Anti-hyperalgesic and anti-inflammatory activity of Alternanthera maritima extract and 2 ″-O-α-l-rhamnopyranosylvitexin in mice. Inflammation 38:2057–2066CrossRefGoogle Scholar
  14. De Souza MM, Kern P, Floriani AEO, Cechinel-Filho V (1998) Analgesic properties of a hydroalcoholic extract obtained from Alternanthera brasiliana. Phyther Res 12:279–281CrossRefGoogle Scholar
  15. Duarte M d R, Debur M d C (2004) Characters of the leaf and stem morpho-anatomy of Alternanthera brasiliana (L.) O. Kuntze, Amaranthaceae. Rev Bras Ciências Farm 40:85–92Google Scholar
  16. Fathima SN, Salwa A, Anusha S, Fatima S (2016) Study of antiasthmatic activity of ethanolic extract of Alternanthera sessilis leaves. Int J Pharma Res Heal Sci 4:1478–1482Google Scholar
  17. Ferreira Júnior WS, Da Silva TG, Alencar Menezes IR, Albuquerque UP (2016) The role of local disease perception in the selection of medicinal plants: a study of the structure of local medical systems. J Ethnopharmacol 181:146–157. doi: 10.1016/j.jep.2016.01.038 CrossRefGoogle Scholar
  18. Firdhouse MJ, Lalitha P (2013) Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells. Cancer Nanotechnol 4:137CrossRefGoogle Scholar
  19. Gafter-Gvili A, Fraser A, Paul M, Leibovici L (2005) Meta-analysis: antibiotic prophylaxis reduces mortality in neutropenic patients. Ann Intern Med 142:979–995CrossRefGoogle Scholar
  20. Garín-Aguilar ME, Benavides-Catalán D, Segura Cobos D et al (2014) Spasmolytic effect of Alternanthera repens on isolated rat ileum. Pharm Biol 52:479–485CrossRefGoogle Scholar
  21. Haraguchi H, Tanimoto K, Tamura Y et al (1998) Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 48:125–129CrossRefGoogle Scholar
  22. He M, Min J-W, Kong W-L et al (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85CrossRefGoogle Scholar
  23. Heinrich M (2013) Ethnopharmacology and drug discovery. Compr Nat Prod II Chem Biol dev Modif Bioactivity 3:351–381Google Scholar
  24. Hossain AI, Faisal M, Rahman S et al (2014) A preliminary evaluation of antihyperglycemic and analgesic activity of Alternanthera sessilis aerial parts. BMC Complement Altern Med 14:169CrossRefGoogle Scholar
  25. Hundiwale Jogendra C, Patil Avinash V, Kulkarni Mohan V et al (2012) A current update on phytopharmacology of the genus Alternanthera. J Pharm Res 5:1924–1929Google Scholar
  26. Hunskaar S, Hole K (1987) The formalin test in mice: dissociation between inflammatory and noninflammatory pain. Pain 30: 103–114Google Scholar
  27. Iamonico D, Sánchez-Del Pino I (2016) Taxonomic revision of the genus Alternanthera (Amaranthaceae) in Italy. Plant Biosyst Int J Deal with all Asp Plant Biol 150:333–342CrossRefGoogle Scholar
  28. Kumar YS, Sanjib D (2013) Evaluation of anti-diarrhoeal property of crude aqueous extract of Alternanthera sessilis Linn. Int J Pharm Inov 3:213–217Google Scholar
  29. Kumar S, Barua C, Das S (2014) Evaluation of anti-inflammatory activity OF Alternanthera brasiliana leaves. Int J Pharma Bio Sci 5:33–41Google Scholar
  30. Lagrota MHC, Wigg MD, Santos MMG et al (1994) Inhibitory activity of extracts of Alternanthera brasiliana (Amaranthaceae) against the herpes simplex virus. Phyther Res 8:358–361CrossRefGoogle Scholar
  31. Lam KY, Ling APK, Koh RY et al (2016) A review on medicinal properties of orientinGoogle Scholar
  32. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129CrossRefGoogle Scholar
  33. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435CrossRefGoogle Scholar
  34. Mori A, Nishino C, Enoki N, Tawata S (1987) Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26:2231–2234CrossRefGoogle Scholar
  35. Morris ME, Zhang S (2006) Flavonoid–drug interactions: effects of flavonoids on ABC transporters. Life Sci 78:2116–2130CrossRefGoogle Scholar
  36. NCCLS (2015) NCCLS document M7-A10. In: NCCLS (ed) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved Standard, Tenth Edit. NCCLS, Wayne, Pennsylvania, pp M7-A10Google Scholar
  37. Ogundare AO, Oladejo BO (2014) Antibacterial activities of the plant extract of Alternanthera repens. Eur J Bot Plant Sci Phytol 1:1–7Google Scholar
  38. Ohemeng KA, Schwender CF, Fu KP, Barrett JF (1993) DNA gyrase inhibitory and antibacterial activity of some flavones (1). Bioorg Med Chem Lett 3:225–230CrossRefGoogle Scholar
  39. Okeke IN, Laxminarayan R, Bhutta ZA et al (2005) Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infect Dis 5:481–493CrossRefGoogle Scholar
  40. Pereira DF, dos SANTOS M, Pozzatti P et al (2007) Antimicrobial activity of a crude extract and fractions from Alternanthera brasiliana (L.) O. Kuntze leaves. Lat. Am J Pharm 26:893Google Scholar
  41. Rand MD (2010) Drosophotoxicology: the growing potential for Drosophila in neurotoxicology. Neurotoxicol Teratol 32:74–83CrossRefGoogle Scholar
  42. Rodrigues LB, Martins AOBPB, Cesário FRAS et al (2016) Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: in vivo mouse models. Chem Biol Interact 257:14–25CrossRefGoogle Scholar
  43. Samudrala PK, Augustine BB, Kasala ER et al (2014) Evaluation of antitumor activity and antioxidant status of Alternanthera brasiliana against Ehrlich ascites carcinoma in Swiss albino mice. Pharm Res 7:66–73Google Scholar
  44. Sartor RB (2008) Microbial influences in inflammatory bowel diseases. Gastroenterology 134:577–594CrossRefGoogle Scholar
  45. Seelinger G, Merfort I, Schempp CM (2008) Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med 74:1667–1677CrossRefGoogle Scholar
  46. Shakil S, Khan R, Zarrilli R, Khan AU (2008) Aminoglycosides versus bacteria—a description of the action, resistance mechanism, and nosocomial battleground. J Biomed Sci 15:5–14CrossRefGoogle Scholar
  47. Shivashankar P, Purushotham K, Lahkar M (2017) Effect of Alternanthera brasiliana in experimentally induced inflammatory bowel disease in albino rats. Int J Basic Clin Pharmacol 5:1809–1815Google Scholar
  48. Silva LC d, Pegoraro KA, Pereira AV et al (2010) Antimicrobial activity of Alternanthera brasiliana Kuntze (Amaranthaceae): a biomonitored study. Lat am J Pharm 30:147–153Google Scholar
  49. Silva IV, Aalves SK, Araújo CF et al (2015) Planta Medicinal: Por Dentro de Alternanthera brasiliana (L.) O. Kuntze (Amaranthaceae) Cultivada em Quintais (Alta Floresta-MT)Google Scholar
  50. Souza RKD, da Silva MAP, de Menezes IRA et al (2014) Ethnopharmacology of medicinal plants of carrasco, northeastern Brazil. J Ethnopharmacol 157:99–104. doi: 10.1016/j.jep.2014.09.001 CrossRefGoogle Scholar
  51. Tiwari AK, Pragya P, Ram KR, Chowdhuri DK (2011) Environmental chemical mediated male reproductive toxicity: Drosophila melanogaster as an alternate animal model. Theriogenology 76:197–216CrossRefGoogle Scholar
  52. Tjølsen A, Berge O-G, Hunskaar S et al (1992) The formalin test: an evaluation of the method. Pain 51:5–17CrossRefGoogle Scholar
  53. Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55:377–391CrossRefGoogle Scholar
  54. Trapp MA, Kai M, Mithöfer A, Rodrigues-Filho E (2015) Antibiotic oxylipins from Alternanthera brasiliana and its endophytic bacteria. Phytochemistry 110:72–82CrossRefGoogle Scholar
  55. Usunoff KG, Popratiloff A, Schmitt O, Wree A (2006) Functional neuroanatomy of the pain system. SpringerGoogle Scholar
  56. Wang J, Liu Y-T, Xiao L et al (2014) Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory in acute lung injury by suppressing COX-2 and NF-kB pathway. Inflammation 37:2085–2090CrossRefGoogle Scholar
  57. Yoshikai Y (2001) Roles of prostaglandins and leukotrienes in acute inflammation caused by bacterial infection. Curr Opin Infect Dis 14:257–263CrossRefGoogle Scholar
  58. Zankari E, Hasman H, Cosentino S et al (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644CrossRefGoogle Scholar
  59. Zhang X, Wang G, Gurley EC, Zhou H (2014) Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One 9:e107072CrossRefGoogle Scholar
  60. Ziyan L, Yongmei Z, Nan Z et al (2007) Evaluation of the anti-inflammatory activity of luteolin in experimental animal models. Planta Med 73:221–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Henrique Douglas Melo Coutinho
    • 1
  • Cícera Datiane de Morais Oliveira-Tintino
    • 2
  • Saulo Relison Tintino
    • 1
  • Raimundo Luiz Silva Pereira
    • 1
  • Thiago Sampaio de Freitas
    • 1
  • Maria Arlene Pessoa da Silva
    • 3
  • Jeferson Luis Franco
    • 4
  • Francisco Assis Bezerra da Cunha
    • 5
  • José Galberto Martins da Costa
    • 6
  • Irwin Rose Alencar de Menezes
    • 2
  • Aline Augusti Boligon
    • 7
  • João Batista Teixeira da Rocha
    • 7
  • Maria Ivaneide Rocha
    • 1
  • Joycy Francely Sampaio dos Santos
    • 5
  1. 1.Laboratório de Microbiologia e Biologia Molecular, Departamento de Química BiológicaUniversidade Regional do Cariri – URCACratoBrazil
  2. 2.Laboratório de Farmacologia e Química Molecular, Departamento de Química BiológicaUniversidade Regional do Cariri – URCACratoBrazil
  3. 3.Laboratório de Botânica Aplicada - Departamento de Ciências BiológicasUniversidade Regional do Cariri – URCACratoBrazil
  4. 4.Universidade Federal do Pampa – UNIPAMPASão GabrielBrazil
  5. 5.Laboratório de Bioprospecção do Semiárido, Departamento de Química BiológicaUniversidade Regional do Cariri – URCACratoBrazil
  6. 6.Laboratório de Pesquisa de produtos Naturais – LPPN, Departamento de Química BiológicaUniversidade Regional do Cariri – URCACratoBrazil
  7. 7.Universidade Federal de Santa Maria – UFSMSanta MariaBrazil

Personalised recommendations