Skip to main content

CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: a microcosm study

Abstract

We studied the fate and toxicity of two types of CeO2 NPs (bare or citrate-coated) in environmentally relevant conditions, using large indoor microcosms. Long-term exposure was carried out on a three-leveled freshwater trophic chain, comprising microbial communities as primary producers, chironomid larvae as primary consumers, and amphibian larvae as secondary consumers. Whereas coated NPs preferentially sedimented, bare NPs were mainly found in the water column. However, mass balance indicated low recovery (51.5%) for bare NPs, indicating possible NP loss, against 98.8% of recovery for coated NPs. NPs were rather chemically stable, with less than 4% of dissolution. Chironomid larvae ingested large amounts of NPs and were vectors of contamination for amphibian larvae. Although bioaccumulation in amphibian larvae was important (9.47 and 9.74 mg/kg for bare and coated NPs, respectively), no biomagnification occurred through the trophic chain. Finally, significant genotoxicity was observed in amphibian larvae, bare CeO2 NPs being more toxic than citrate-coated NPs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. AFNOR (2000) NF T 90-325. Evaluation de la génotoxicité au moyen de larves d’amphibiens (Xenopus laevis, Pleurodeles waltl.)

  2. AFNOR (2004) XP T 90–339-1. Determination of the toxicity of freshwater sediments to Chironomus riparius—part 1: natural sediments

  3. Baker TJ, Tyler CR, Galloway TS (2014) Impacts of metal and metal oxide nanoparticles on marine organisms. Environ Pollut Barking Essex 1987 186:257–271. doi:10.1016/j.envpol.2013.11.014

    CAS  Article  Google Scholar 

  4. Benameur L, Auffan M, Cassien M et al (2015) DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts: evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology 9:696–705. doi:10.3109/17435390.2014.968889

    CAS  Article  Google Scholar 

  5. Bour A, Mouchet F, Verneuil L et al (2015) Toxicity of CeO2 nanoparticles at different trophic levels—effects on diatoms, chironomids and amphibians. Chemosphere 120:230–236. doi:10.1016/j.chemosphere.2014.07.012

    CAS  Article  Google Scholar 

  6. Bour A, Mouchet F, Cadarsi S et al (2016a) Toxicity of CeO2 nanoparticles on a freshwater experimental trophic chain: a study in environmentally relevant conditions through the use of mesocosms. Nanotoxicology 10:245–255. doi:10.3109/17435390.2015.1053422

    CAS  Google Scholar 

  7. Bour A, Mouchet F, Cadarsi S et al (2016b) Impact of CeO2 nanoparticles on the functions of freshwater ecosystems: a microcosm study. Environ Sci Nano 3:830–838. doi:10.1039/C6EN00116E

    CAS  Article  Google Scholar 

  8. Chen T, Yan J, Li Y (2014) Genotoxicity of titanium dioxide nanoparticles. J Food Drug Anal 22:95–104. doi:10.1016/j.jfda.2014.01.008

    CAS  Article  Google Scholar 

  9. De Haas EM, Kraak MHS, Koelmans AA, Admiraal W (2005) The impact of sediment reworking by opportunistic chironomids on specialised mayflies. Freshw Biol 50:770–780. doi:10.1111/j.1365-2427.2005.01356.x

    Article  Google Scholar 

  10. Debenest T, Petit A-N, Gagné F et al (2011) Comparative toxicity of a brominated flame retardant (tetrabromobisphenol A) on microalgae with single and multi-species bioassays. Chemosphere 85:50–55. doi:10.1016/j.chemosphere.2011.06.036

    CAS  Article  Google Scholar 

  11. Dogra Y, Arkill KP, Elgy C et al (2016) Cerium oxide nanoparticles induce oxidative stress in the sediment-dwelling amphipod Corophium volutator. Nanotoxicology 10:480–487. doi:10.3109/17435390.2015.1088587

    CAS  Article  Google Scholar 

  12. Fang X, Yu R, Li B et al (2010) Stresses exerted by ZnO, CeO2 and anatase TiO2 nanoparticles on the Nitrosomonas europaea. J Colloid Interface Sci 348:329–334. doi:10.1016/j.jcis.2010.04.075

    CAS  Article  Google Scholar 

  13. Fouqueray M, Noury P, Dherret L et al (2013) Exposure of juvenile Danio rerio to aged TiO2 nanomaterial from sunscreen. Environ Sci Pollut Res Int 20:3340–3350. doi:10.1007/s11356-012-1256-7

    CAS  Article  Google Scholar 

  14. Gaiser BK, Fernandes TF, Jepson M et al (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health Glob Access Sci Source 8(Suppl 1):S2. doi:10.1186/1476-069X-8-S1-S2

    Google Scholar 

  15. Gallien L, Durocher M (1957) Table chronologique du développement chez Pleurodeles waltlii Michah. Bull Biol Fr Belg 91:97–114

  16. Garaud M, Auffan M, Devin S et al (2016) Integrated assessment of ceria nanoparticle impacts on the freshwater bivalve Dreissena polymorpha. Nanotoxicology 10:935–944. doi:10.3109/17435390.2016.114636

  17. García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141. doi:10.1016/j.desal.2010.10.052

    Article  Google Scholar 

  18. Golbamaki N, Rasulev B, Cassano A et al (2015) Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nano 7:2154–2198. doi:10.1039/C4NR06670G

    CAS  Google Scholar 

  19. Handy RD, Cornelis G, Fernandes T et al (2012a) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31:15–31. doi:10.1002/etc.706

    CAS  Article  Google Scholar 

  20. Handy RD, van den Brink N, Chappell M et al (2012b) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicol Lond Engl 21:933–972. doi:10.1007/s10646-012-0862-y

    CAS  Article  Google Scholar 

  21. Hassellöv M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicol Lond Engl 17:344–361. doi:10.1007/s10646-008-0225-x

    Article  Google Scholar 

  22. Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3:352–355. doi:10.1038/nnano.2008.110

    CAS  Article  Google Scholar 

  23. ISO 21427-1 (2006) Evaluation of genotoxicity by measurement of the induction of micronuclei. Part 1: evaluation of genotoxicity using amphibian larvae

  24. Keller AA, Wang H, Zhou D et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967. doi:10.1021/es902987d

    CAS  Article  Google Scholar 

  25. Kulacki KJ, Cardinale BJ, Keller AA et al (2012) How do stream organisms respond to, and influence, the concentration of titanium dioxide nanoparticles? A mesocosm study with algae and herbivores. Environ Toxicol Chem SETAC 31:2414–2422. doi:10.1002/etc.1962

    CAS  Article  Google Scholar 

  26. Lagauzère S, Boyer P, Stora G, Bonzom J-M (2009) Effects of uranium-contaminated sediments on the bioturbation activity of Chironomus riparius larvae (Insecta, Diptera) and Tubifex tubifex worms (Annelida, Tubificidae). Chemosphere 76:324–334. doi:10.1016/j.chemosphere.2009.03.062

    Article  Google Scholar 

  27. Lee S-W, Kim S-M, Choi J (2009) Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomus riparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28:86–91. doi:10.1016/j.etap.2009.03.001

    CAS  Article  Google Scholar 

  28. Madre, JF (2006) Logiciel Mesurim. Académie d’Amiens. http://svt.ac-amiens.fr/archives_svt/info/logiciels/Mesurim2/Index.htm

  29. Manier N, Garaud M, Delalain P et al (2011) Behaviour of ceria nanoparticles in standardized test media—influence on the results of ecotoxicological tests. J Phys Conf Ser 304:012058. doi:10.1088/1742-6596/304/1/012058

    Article  Google Scholar 

  30. Manier N, Bado-Nilles A, Delalain P et al (2013) Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environ Pollut 180:63–70. doi:10.1016/j.envpol.2013.04.040

    CAS  Article  Google Scholar 

  31. McGill R, Tukey JW, Larsen WA (1978) Variations of box plots. Am Stat 32:12. doi:10.2307/2683468

    Google Scholar 

  32. Mouchet F, Landois P, Datsyuk V et al (2009) International amphibian micronucleus standardized procedure (ISO 21427-1) for in vivo evaluation of double-walled carbon nanotubes toxicity and genotoxicity in water. Environ Toxicol 26:136–145. doi:10.1002/tox.20537

    Article  Google Scholar 

  33. Nogaro G, Mermillod-Blondin F, Montuelle B et al (2008) Chironomid larvae stimulate biogeochemical and microbial processes in a riverbed covered with fine sediment. Aquat Sci 70:156–168. doi:10.1007/s00027-007-7032-y

    CAS  Article  Google Scholar 

  34. OECD (2010) List of manufactured nanomaterials and list of endpoints for phase one of the sponsorship programme for the testing of manufactured nanomaterials: revision. Series on the Safety of Manufactured Nanomaterials No. 27, Organisation for Economic Co-operation and Development

  35. Pelletier DA, Suresh AK, Holton GA et al (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76:7981–7989. doi:10.1128/AEM.00650-10

    CAS  Article  Google Scholar 

  36. Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398:613–650. doi:10.1007/s00216-010-3881-7

    CAS  Article  Google Scholar 

  37. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1–11. doi:10.1007/s11051-012-1109-9

    Article  Google Scholar 

  38. Quik JTK, Lynch I, Van Hoecke K et al (2010) Effect of natural organic matter on cerium dioxide nanoparticles settling in model fresh water. Chemosphere 81:711–715. doi:10.1016/j.chemosphere.2010.07.062

    CAS  Article  Google Scholar 

  39. Rodea-Palomares I, Gonzalo S, Santiago-Morales J et al (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol Amsterdam Neth 122–123:133–143. doi:10.1016/j.aquatox.2012.06.005

    Article  Google Scholar 

  40. Roh J-Y, Park Y-K, Park K, Choi J (2010) Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ Toxicol Pharmacol 29:167–172. doi:10.1016/j.etap.2009.12.003

    CAS  Article  Google Scholar 

  41. Rothen-Rutishauser B, Grass RN, Blank F et al (2009) Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure of humans. Environ Sci Technol 43:2634–2640. doi:10.1021/es8029347

    CAS  Article  Google Scholar 

  42. Singh N, Manshian B, Jenkins GJS et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914. doi:10.1016/j.biomaterials.2009.04.009

    CAS  Article  Google Scholar 

  43. Tella M, Auffan M, Brousset L et al (2014) Transfer, transformation, and impacts of ceria nanomaterials in aquatic mesocosms simulating a pond ecosystem. Environ Sci Technol 48:9004–9013. doi:10.1021/es501641b

    Article  Google Scholar 

  44. Tella M, Auffan M, Brousset L et al (2015) Chronic dosing of a simulated pond ecosystem in indoor aquatic mesocosms: fate and transport of CeO2 nanoparticles. Environ Sci Nano 2:653–663. doi:10.1039/C5EN00092K

    CAS  Article  Google Scholar 

  45. Thill A, Zeyons O, Spalla O et al (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156. doi:10.1021/es060999b

    CAS  Article  Google Scholar 

  46. Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S et al (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263(Pt 2):677–684. doi:10.1016/j.jhazmat.2013.10.030

    CAS  Article  Google Scholar 

  47. Wiesner MR, Lowry GV, Jones KL et al (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462. doi:10.1021/es803621k

    CAS  Article  Google Scholar 

  48. Xia J, Zhao HZ, Lu GH (2013) Effects of selected metal oxide nanoparticles on multiple biomarkers in Carassius auratus. Biomed Environ Sci 26:742–749. doi:10.3967/0895-3988.2013.09.005

    CAS  Google Scholar 

  49. Yang X, Gondikas AP, Marinakos SM et al (2012) Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 46:1119–1127. doi:10.1021/es202417t

    CAS  Article  Google Scholar 

  50. Zhang H, He X, Zhang Z et al (2011) Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ Sci Technol 45:3725–3730. doi:10.1021/es103309n

    CAS  Article  Google Scholar 

  51. Zhang P, He X, Ma Y et al (2012) Distribution and bioavailability of ceria nanoparticles in an aquatic ecosystem model. Chemosphere 89:530–535. doi:10.1016/j.chemosphere.2012.05.044

    CAS  Article  Google Scholar 

  52. Zhao C-M, Wang W-X (2011) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–370. doi:10.3109/17435390.2011.579632

    Article  Google Scholar 

  53. Zhu X, Wang J, Zhang X et al (2010) Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 79:928–933. doi:10.1016/j.chemosphere.2010.03.022

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agathe Bour.

Ethics declarations

Funding

This work was supported by the French National Research Agency (ANR) [grant ANR-10-NANO-0006/MESONNET].

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bour, A., Mouchet, F., Cadarsi, S. et al. CeO2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: a microcosm study. Environ Sci Pollut Res 24, 17081–17089 (2017). https://doi.org/10.1007/s11356-017-9346-1

Download citation

Keywords

  • Microcosm
  • Cerium dioxide nanoparticles
  • Genotoxicity
  • Nanoparticle partitioning
  • Trophic chain
  • Amphibians
  • Long-term exposure