Skip to main content

Advertisement

Log in

Studies on piston bowl geometries using single blend ratio of various non-edible oils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

PSOME:

Pumpkin seed oil methyl ester

OME:

Orange oil methyl ester

NOME:

Neem oil methyl ester

HCC:

Hemispherical combustion chamber

TCC:

Toroidal combustion chamber

TRCC:

Trapezoidal combustion chamber

B1:

20% pumpkin seed oil methyl ester with 80% diesel

B2:

20% orange oil methyl ester with 80% diesel

B3:

20% neem oil methyl ester with 80% diesel

BTE:

Brake thermal efficiency (%)

BSFC:

Brake specific fuel consumption (kg/kWh)

CO:

Carbon monoxide (% volume)

HC:

Hydrocarbon (ppm)

NOx:

Oxides of nitrogen (ppm)

°CA:

degree crank angle

References

  • Annamalai M, Dhinesh B, Nanthagopal K et al (2016) An assessment on performance, combustion and emission behavior of a diesel engine powered by ceria nanoparticle blended emulsified biofuel. Energy Convers Manag 123:372–380. doi:10.1016/j.enconman.2016.06.062

    Article  CAS  Google Scholar 

  • Aransiola E, Betiku E, Ikhuomoregbe D, Ojumu T (2012) Production of biodiesel from crude neem oil feedstock and its emissions from internal combustion engines. African J Biotechnol 11:6178–6186. doi:10.5897/AJB11.2301

    Article  CAS  Google Scholar 

  • Arbi I, Mohamed H, Mokbli S et al (2015) Yucca aloifolia oil methyl esters. Ind Crop Prod 69:257–262. doi:10.1016/j.indcrop.2015.02.029

    Article  Google Scholar 

  • Awolu OO, Layokun SK (2013) Optimization of two-step transesterification production of biodiesel from neem (Azadirachta indica) oil. Int J Energy Environ Eng 4:39. doi:10.1186/2251-6832-4-39

    Article  Google Scholar 

  • Devan PK, Mahalakshmi NV (2009) A study of the performance, emission and combustion characteristics of a compression ignition engine using methyl ester of paradise oil—eucalyptus oil blends. Appl Energy 86:675–680. doi:10.1016/j.apenergy.2008.07.008

    Article  CAS  Google Scholar 

  • Dhawane SH, Kumar T, Halder G (2016) Biodiesel synthesis from Hevea brasiliensis oil employing carbon supported heterogeneous catalyst: optimization by Taguchi method. Renew Energy 89:506–514. doi:10.1016/j.renene.2015.12.027

    Article  CAS  Google Scholar 

  • Dhinesh B, Annamalai M, Lalvani IJ, Annamalai K (2016a) Studies on the influence of combustion bowl modification for the operation of Cymbopogon flexuosus biofuel based diesel blends in a DI diesel engine. Appl Therm Eng. doi:10.1016/j.applthermaleng.2016.10.117

  • Dhinesh B, Isaac JoshuaRamesh Lalvani J, Parthasarathy M, Annamalai K (2016b) An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel. Energy Convers Manag 117:466–474. doi:10.1016/j.enconman.2016.03.049

    Article  CAS  Google Scholar 

  • Dhinesh B, Niruban Bharathi R, Isaac J, Ramesh Lalvani J et al (2016c) An experimental analysis on the influence of fuel borne additives on the single cylinder diesel engine powered by Cymbopogon flexuosus biofue. J Energy Inst J:1–12. doi:10.1016/j.joei.2016.04.010

  • García-Martínez N, Andreo-Martínez P, Quesada-Medina J et al (2016) Optimization of non-catalytic transesterification of tobacco (Nicotiana tabacum) seed oil using supercritical methanol to biodiesel production. Energy Convers Manag. doi:10.1016/j.enconman.2016.10.078

  • Gnanamoorthi V, Navin Marudhan M, Devaradjane G (2016) Effect of combustion chamber geometry on Perfromance, combustion and emission of direct injection diesel engine with ethanol-diesel blend. Therm Sci 20:937–946. doi:10.2298/TSCI16S4937G

    Article  Google Scholar 

  • Hajra B, Kumar M, Pathak AK, Guria C (2016) Surface tension and rheological behavior of sal oil methyl ester biodiesel and its blend with petrodiesel fuel. Fuel 166:130–142. doi:10.1016/j.fuel.2015.10.109

    Article  CAS  Google Scholar 

  • Holman JP (2007) Experimental techniques for engineers, Seventh edn. Tata MCGraw Hill, New Delhi

    Google Scholar 

  • Imdadul HK, Zulkifli NWM, Masjuki HH, Kalam MA (2016) Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel. Environ Sci Pollut Res. doi:10.1007/s11356-016-7847-y

  • Isaac JoshuaRamesh Lalvani J, Parthasarathy M, Dhinesh B, Annamalai K (2016) Pooled effect of injection pressure and turbulence inducer piston on performance, combustion, and emission characteristics of a DI diesel engine powered with biodiesel blend. Ecotoxicol Environ Saf 134:336–343. doi:10.1016/j.ecoenv.2015.08.020

    Article  CAS  Google Scholar 

  • Jaichandar S, Annamalai K (2012a) Influences of re-entrant combustion chamber geometry on the performance of pongamia biodiesel in a DI diesel engine. Energy 44:633–640. doi:10.1016/j.energy.2012.05.029

    Article  CAS  Google Scholar 

  • Jaichandar S, Annamalai K (2012b) Effects of open combustion chamber geometries on the performance of pongamia biodiesel in a di diesel engine. Fuel 98:272–279. doi:10.1016/j.fuel.2012.04.004

    Article  CAS  Google Scholar 

  • Jaichandar S, Annamalai K (2013) Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 55:330–339. doi:10.1016/j.energy.2013.04.019

    Article  CAS  Google Scholar 

  • Jaichandar S, Senthil Kumar P, Annamalai K (2012) Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 47:388–394. doi:10.1016/j.energy.2012.09.059

    Article  CAS  Google Scholar 

  • Jong Boon O, Harun Mohamed I, Varghese S, et al (2016) Graphite oxide nanoparticles as diesel fuel additive for cleaner emissions and lower fuel consumption. doi: 10.1021/acs.energyfuels.5b02162

  • JoshuaRamesh Lalvani IJ, Parthasarathy M, Dhinesh B, Annamalai K (2015) Experimental investigation of combustion, performance and emission characteristics of a modified piston. J Mech Sci Technol 29:4519–4525. doi:10.1007/s12206-015-0951-y

    Article  Google Scholar 

  • Karthickeyan V, Arulraj P (2014) Experimental investigation on emission characteristics of catalytic converter using different wash coat material. Appl Mech Mater 550:62–70. doi:10.4028/www.scientific.net/AMM.550.62

    Article  CAS  Google Scholar 

  • Karthickeyan V, Balamurugan P (2017) Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine. Heat Mass Transf 1–14. doi:10.1007/s00231-017-2058-8

  • Karthickeyan V, Balamurugan P, Senthil R (2015a) Experimental investigation of tyre pyrolysis oil (TPO) in diesel engine without any engine modification. J Biofuels Bioenergy 1:170–183. doi:10.5958/2454-8618.2015.00018.8

    Article  Google Scholar 

  • Karthickeyan V, Balamurugan P, Senthil R (2015b) Investigation of CI engine fueled with ethanol nano additives blended diesel. Proc First Int Conf Recent Adv Bioenergy Res 121–130 doi: 10.1007/978-81-322-2773-1

  • Karthickeyan V, Balamurugan P, Senthil R (2016a) Comparative studies on emission reduction in thermal barrier coated engine using single blend ratio of various non-edible oils. J Braz Soc Mech Sci Eng 1:1–11. doi:10.1007/s40430-016-0645-0

    Google Scholar 

  • Karthickeyan V, Balamurugan P, Senthil R (2016b) Studies on orange oil methyl ester in diesel engine with hemispherical and toroidal combustion chamber. Therm Sci 20:981–989. doi:10.2298/TSCI16S4981K

    Article  Google Scholar 

  • Karthickeyan V, Balamurugan P, Senthil R (2016c) Production of orange oil methyl ester and experimental investigation on thermal barrier coated diesel engine. Asian J Res Soc Sci Humanit 6:156–178. doi:10.5958/2249-7315.2016.00601.8

    Google Scholar 

  • Karthickeyan V, Balamurugan P, Rohith G, Senthil R (2017a) Developing of ANN model for prediction of performance and emission characteristics of VCR engine with orange oil biodiesel blends. J Braz Soc Mech Sci Eng:1–12. doi:10.1007/s40430-017-0768-y

  • Karthickeyan V, Balamurugan P, Senthil R (2017b) Investigation on environmental effects of thermal barrier coating with waste cooking palm oil methyl ester blends in diesel engine. Biofuels (Accepted for Publication). doi:10.1080/17597269.2017.1316142

  • Karthikeyan S (2016) Environmental effects an environmental effect of Vitis vinifera biofuel blends in a marine engine. Energy Sources, Part A Recover Util Environ Eff 38:3262–3267. doi:10.1080/15567036.2016.1179362

    Article  CAS  Google Scholar 

  • Kivevele TT, Huan Z (2015) An analysis of fuel properties of Fatty acid methyl ester from manketti seeds oil an analysis of fuel properties of Fatty acid methyl ester from manketti seeds oil. Int J Green Energy:37–41. doi:10.1080/15435075.2014.886579

  • Mohan MR, Jala RCR, Kaki SS et al (2016) Swietenia mahagoni seed oil: a new source for biodiesel production. Ind Crop Prod 90:28–31. doi:10.1016/j.indcrop.2016.06.010

    Article  CAS  Google Scholar 

  • Muthukumaran N, Saravanan CG, Prasanna Raj Yadav S et al (2015) Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application. Fuel 155:68–76. doi:10.1016/j.fuel.2015.04.014

    Article  CAS  Google Scholar 

  • Naik NS, Balakrishna B (2016) Experimental evaluation of a diesel engine fueled with Balanites aegyptiaca (L.) Del biodiesel blends. Biofuels 7269:1–7. doi:10.1080/17597269.2016.1168026

    Google Scholar 

  • Panda AK, Murugan S, Singh RK (2016) Environmental effects performance and emission characteristics of diesel fuel produced from waste plastic oil obtained by catalytic pyrolysis of waste polypropylene. doi: 10.1080/15567036.2013.800924

  • Parthasarathy M, Isaac JoshuaRamesh Lalvani J, Dhinesh B, Annamalai K (2016) Effect of hydrogen on ethanol-biodiesel blend on performance and emission characteristics of a direct injection diesel engine. Ecotoxicol Environ Saf 134:433–439. doi:10.1016/j.ecoenv.2015.11.005

    Article  CAS  Google Scholar 

  • Pradhan P, Chakraborty S, Chakraborty R (2016) Optimization of infrared radiated fast and energy-efficient biodiesel production from waste mustard oil catalyzed by Amberlyst 15 : engine performance and emission quality assessments. Fuel. doi:10.1016/j.fuel.2016.01.038

  • Prasanna Raj Yadav S, Saravanan CG, Vallinayagam R et al (2015) Fuel and engine characterization study of catalytically cracked waste transformer oil. Energy Convers Manag 96:490–498. doi:10.1016/j.enconman.2015.02.051

    Article  CAS  Google Scholar 

  • Purushothaman K, Nagarajan G (2009) Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution. Energy Convers Manag 50:962–969. doi:10.1016/j.enconman.2008.12.030

    Article  CAS  Google Scholar 

  • Rashid U, Ibrahim M, Yasin S et al (2013) Biodiesel from Citrus reticulata (mandarin orange) seed oil, a potential non-food feedstock. Ind Crop Prod 45:355–359. doi:10.1016/j.indcrop.2012.12.039

    Article  CAS  Google Scholar 

  • Rout T, Pradhan D, Singh RK, Kumari N (2015) Exhaustive study of products obtained from coconut shell pyrolysis. J Environ Chem Eng. doi:10.1016/j.jece.2016.02.024

  • Sanjid A, Kalam MA, Masjuki HH et al (2014) Combustion, performance and emission characteristics of a DI diesel engine fueled with Brassica juncea methyl ester and its blends. RSC Adv 4:36973–36982. doi:10.1039/C4RA05085A

    Article  CAS  Google Scholar 

  • Sathish Kumar R, Sureshkumar K, Velraj R (2015) Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel 140:90–96. doi:10.1016/j.fuel.2014.09.103

    Article  CAS  Google Scholar 

  • Schinas P, Karavalakis GÃ, Davaris C et al (2009) Pumpkin ( Cucurbita pepo L .) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 33:44–49. doi:10.1016/j.biombioe.2008.04.008

    Article  CAS  Google Scholar 

  • Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sust Energ Rev 15:4732–4745. doi:10.1016/j.rser.2011.07.079

    Article  CAS  Google Scholar 

  • Subramanian N, Mahendradas DK, Kasirajan R, Sahadevan R (2015) Bio-oil separation from potential non-edible urban waste source Putranjiva roxburghii. Sep Sci Technol 50:2066–2074. doi:10.1080/01496395.2015.1018439

    CAS  Google Scholar 

  • Vairamuthu G, Sundarapandian S, Thangagiri B (2015) Experimental investigations on the influence of properties of Calophyllum inophyllum biodiesel on performance, combustion, and emission characteristics of a DI diesel engine. Int J Ambient Energy:37–41. doi:10.1080/01430750.2015.1023838

  • Vallinayagam R, Vedharaj S, Yang WM et al (2013) Combustion performance and emission characteristics study of pine oil in a diesel engine. Energy 57:344–351. doi:10.1016/j.energy.2013.05.061

    Article  CAS  Google Scholar 

  • Vedharaj S, Vallinayagam R, Yang WM et al (2014) Reduction of harmful emissions from a diesel engine fueled by kapok methyl ester using combined coating and SNCR technology. Energy Convers Manag 79:581–589. doi:10.1016/j.enconman.2013.12.056

    Article  CAS  Google Scholar 

  • Vedharaj S, Vallinayagam R, Yang WM et al (2015) Optimization of combustion bowl geometry for the operation of kapok biodiesel—diesel blends in a stationary diesel engine. Fuel 139:561–567. doi:10.1016/j.fuel.2014.09.020

    Article  CAS  Google Scholar 

  • Velmurugan A, Loganathan M, Gunasekaran EJ (2014) Experimental investigations on combustion, performance and emission characteristics of thermal cracked cashew nut shell liquid (TC-CNSL)-diesel blends in a diesel engine. Fuel 132:236–245. doi:10.1016/j.fuel.2014.04.060

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to University Grants Commission—South Eastern Regional Office, Hyderabad, India, for financial support through minor research project for teachers with grant number 4-4/2013-14 (MRP-SEM/UGC-SERO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balamurugan Pasupathy.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Three different biodiesels were prepared from three distinct non-edible oils and analysed in three different bowl geometries namely HCC, TCC and TRCC.

• Higher BTE and lower BSFC were observed in TCC bowl geometry.

• TCC bowl geometry showed higher heat release rate, cylinder pressure and lower ignition delay than HCC and TRCC with B2 fuel sample.

• Reduced CO, HC and smoke emissions were observed with B2 sample in TCC except NOx emission.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viswanathan, K., Pasupathy, B. Studies on piston bowl geometries using single blend ratio of various non-edible oils. Environ Sci Pollut Res 24, 17068–17080 (2017). https://doi.org/10.1007/s11356-017-9344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9344-3

Keywords

Navigation