Skip to main content

Advertisement

Log in

Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel–diesel-fueled engine

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of the polymethyl acrylate (PMA) additive on the formation of particulate matter (PM) and nitrogen oxide (NOX) emission from a diesel coconut and/or Calophyllum inophyllum biodiesel-fueled engine. The physicochemical properties of 20% of coconut and/or C. inophyllum biodiesel–diesel blend (B20), 0.03 wt% of PMA with B20 (B20P), and diesel fuel were measured and compared to ASTM D6751, D7467, and EN 14214 standard. The test results showed that the addition of PMA additive with B20 significantly improves the cold-flow properties such as pour point (PP), cloud point (CP), and cold filter plugging point (CFPP). The addition of PMA additives reduced the engine’s brake-specific energy consumption of all tested fuels. Engine emission results showed that the additive-added fuel reduce PM concentration than B20 and diesel, whereas the PM size and NOX emission both increased than B20 fuel and baseline diesel fuel. Also, the effect of adding PMA into B20 reduced Carbon (C), Aluminum (Al), Potassium (K), and volatile materials in the soot, whereas it increased Oxygen (O), Fluorine (F), Zinc (Zn), Barium (Ba), Chlorine (Cl), Sodium (Na), and fixed carbon. The scanning electron microscope (SEM) results for B20P showed the lower agglomeration than B20 and diesel fuel. Therefore, B20P fuel can be used as an alternative to diesel fuel in diesel engines to lower the harmful emissions without compromising the fuel quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ASTM:

American Society for Testing and Materials

BSEC:

Brake-specific energy consumption

BTE:

Brake thermal efficiency

B0:

100% diesel

B20:

20 vol.% of biodiesel with 80% diesel

CB/CB100:

Coconut biodiesel

CB20:

20 vol.% of coconut biodiesel with 80% diesel

CB20P:

20 vol.% of coconut biodiesel with 80% diesel and 0.03 wt% PMA

CFPs:

Cold-flow properties

CIB/CIB100:

Calophyllum inophyllum biodiesel

CIB20:

20 vol.% of Calophyllum inophyllum biodiesel with 80% diesel

CIB20P:

20 vol.% of Calophyllum inophyllum biodiesel with 80% diesel and 0.03 wt% PMA

CO:

Carbon monoxide

FAME:

Fatty acid methyl ester

HC:

Hydrocarbon

NOX :

Nitrogen oxides

PM:

Particulate matter

PMA:

Polymethyl acrylate

TGA:

Thermogravimetric analysis

VOF:

Volatile organic fractions

VOM:

Volatile organic material

Reference

  • Agarwal AK, Gupta T, Kothari A (2011) Particulate emissions from biodiesel vs diesel fuelled compression ignition engine. Renew Sust Energ rev 15:3278–3300

    Article  CAS  Google Scholar 

  • Agarwal AK, Khurana D (2013) Long-term storage oxidation stability of Karanja biodiesel with the use of antioxidants. Fuel Process Technol 106:447–452

    Article  CAS  Google Scholar 

  • Agency USEP (2002) Health assessment document for diesel engine exhaust. National Center for Environmental Assessment

  • Arbab M, Masjuki H, Varman M, Kalam M, Sajjad H, Imtenan S (2014) Performance and emission characteristics of a diesel engine fueled by an optimum biodiesel–biodiesel blend. RSC Adv 4:37122–37129

    Article  CAS  Google Scholar 

  • Arbab M, Varman M, Masjuki H, Kalam M, Imtenan S, Sajjad H, Fattah IR (2015) Evaluation of combustion, performance, and emissions of optimum palm–coconut blend in turbocharged and non-turbocharged conditions of a diesel engine. Energy Convers Manag 90:111–120

    Article  CAS  Google Scholar 

  • Ashraful A, Masjuki H, Kalam M (2015) Particulate matter, carbon emissions and elemental compositions from a diesel engine exhaust fuelled with diesel–biodiesel blends. Atmos Environ 120:463–474

    Article  CAS  Google Scholar 

  • Atabani A, Badruddin IA, Mahlia T, Masjuki H, Mofijur M, Lee KT, Chong W (2013) Fuel properties of Croton megalocarpus, Calophyllum inophyllum, and Cocos nucifera (coconut) methyl esters and their performance in a multicylinder diesel engine. Energ Technol 1:685–694

    Article  CAS  Google Scholar 

  • Aydin H, Bayindir H (2010) Performance and emission analysis of cottonseed oil methyl ester in a diesel engine. Renew Energy 35:588–592

    Article  CAS  Google Scholar 

  • Beatrice C, Bertoli C, D'ALESSIO J, Del Giacomo N, Lazzaro M, Massoli P (1996) Experimental characterization of combustion behaviour of new diesel fuels for low emission engines. Combust Sci Technol 120:335–355

    Article  CAS  Google Scholar 

  • Boshui C, Yuqiu S, Jianhua F, Jiu W, Jiang W (2010) Effect of cold flow improvers on flow properties of soybean biodiesel. Biomass Bioenergy 34:1309–1313

    Article  Google Scholar 

  • Broatch A, Tormos B, Olmeda P, Novella R (2014) Impact of biodiesel fuel on cold starting of automotive direct injection diesel engines. Energy 73:653–660

    Article  CAS  Google Scholar 

  • Can Ö (2014) Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture. Energy Convers Manag 87:676–686

    Article  CAS  Google Scholar 

  • Chastek TQ (2011) Improving cold flow properties of canola-based biodiesel. Biomass Bioenergy 35:600–607

    Article  CAS  Google Scholar 

  • Chien S-M, Huang Y-J, Chuang S-C, Yang H-H (2009) Effects of biodiesel blending on particulate and polycyclic aromatic hydrocarbon emissions in nano/ultrafine/fine/coarse ranges from diesel engine. Aerosol air Qual res 9:18–31

    CAS  Google Scholar 

  • Cliff D (2015) The Hazelwood Mine Fire 2014

  • da Silva Freire LM, dos Santos IMG, de Carvalho Filho JR, de Magalhães Cordeiro AMT, Soledade LEB, Fernandes VJ, de Araujo AS, de Souza AG (2012) Influence of the synthesis process on the properties of flow and oxidative stability of biodiesel from Jatropha curcas biodiesel. Fuel 94:313–316

    Article  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  CAS  Google Scholar 

  • Dodd A, Holubeki Z (1965) Diesel smoke units conversion chart. MIRA Report N, http://docslide.us/documents/diesel-smoke-units-conversion-chart.html

  • Dwivedi D, Agarwal AK, Sharma M (2006) Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: a comparative study. Atmos Environ 40:5586–5595

    Article  CAS  Google Scholar 

  • Echim C, Maes J, De Greyt W (2012) Improvement of cold filter plugging point of biodiesel from alternative feedstocks. Fuel 93:642–648

    Article  CAS  Google Scholar 

  • El-Shobokshy M (1984) A preliminary analysis of the inhalable particulate lead in the ambient atmosphere of the city of Riyadh, Saudi Arabia. Atmos Environ 18(1967):2125–2130

    Article  CAS  Google Scholar 

  • Flynn PF, Durrett RP, Hunter GL, Zur Loye AO, Akinyemi O, Dec JE, Westbrook CK (1999) Diesel combustion: an integrated view combining laser diagnostics, chemical kinetics, and empirical validation

  • Garner S, Sivaramakrishnan R, Brezinsky K (2009) The high-pressure pyrolysis of saturated and unsaturated C7 hydrocarbons. Proc Combust Inst 32:461–467

    Article  CAS  Google Scholar 

  • Greeves G, Wang C 1981 Origins of diesel particulate mass emission. 0148-7191, SAE technical paper

  • Habibullah M, Masjuki HH, Kalam MA, Rizwanul Fattah IM, Ashraful AM, Mobarak HM (2014) Biodiesel production and performance evaluation of coconut, palm and their combined blend with diesel in a single-cylinder diesel engine. Energy Convers Manag 87:250–257

    Article  CAS  Google Scholar 

  • Habibullah M, Rizwanul Fattah I, Masjuki H, Kalam M (2015) Effects of palm–coconut biodiesel blends on the performance and emission of a single-cylinder diesel engine. Energy Fuel 29:734–743

    CAS  Google Scholar 

  • Heywood JB (1988) Internal combustion engine fundamentals, 930. McGraw-Hill New York

  • Hossain MA, Jewaratnam J, Ganesan P (2016) Prospect of hydrogen production from oil palm biomass by thermochemical process—a review. Int J Hydrog Energy 41:16637–16655

    Article  CAS  Google Scholar 

  • İleri E, Koçar G (2013) Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend. Energy Convers Manag 76:145–154

    Article  Google Scholar 

  • Imtenan S, Masjuki HH, Varman M, Kalam MA, Arbab MI, Sajjad H, Ashrafur Rahman SM (2014) Impact of oxygenated additives to palm and Jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Convers Manag 83:149–158

    Article  CAS  Google Scholar 

  • Kalam M, Masjuki H (2011) An experimental investigation of high performance natural gas engine with direct injection. Energy 36(5):3563–3571

  • Katter HB (2015) Towards a clean energy economy: achieving a biofuel mandate for Queensland

  • Lapuerta M, Armas O, Rodríguez-Fernández J (2008a) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223

    Article  CAS  Google Scholar 

  • Lapuerta M, Herreros JM, Lyons LL, García-Contreras R, Briceño Y (2008b) Effect of the alcohol type used in the production of waste cooking oil biodiesel on diesel performance and emissions. Fuel 87:3161–3169

    Article  CAS  Google Scholar 

  • Lapuerta M, Rodríguez-Fernández J, Agudelo JR (2008c) Diesel particulate emissions from used cooking oil biodiesel. Bioresour Technol 99:731–740

    Article  CAS  Google Scholar 

  • Latha KM, Badarinath K (2004) Correlation between black carbon aerosols, carbon monoxide and tropospheric ozone over a tropical urban site. Atmos res 71:265–274

    Article  CAS  Google Scholar 

  • Liaquat A, Masjuki H, Kalam M, Fattah IR, Hazrat M, Varman M, Mofijur M, Shahabuddin M (2013) Effect of coconut biodiesel blended fuels on engine performance and emission characteristics. Procedia Engineering 56:583–590

    Article  CAS  Google Scholar 

  • Lin Y-C, Lee C-F, Fang T (2008) Characterization of particle size distribution from diesel engines fueled with palm-biodiesel blends and paraffinic fuel blends. Atmos Environ 42:1133–1143

    Article  CAS  Google Scholar 

  • Makarevičienė V, Kazancev K, Kazanceva I (2015) Possibilities for improving the cold flow properties of biodiesel fuel by blending with butanol. Renew Energy 75:805–807

    Article  Google Scholar 

  • Mallikappa D, Reddy R, Murthy CS (2011) Performance and emission characteristics of stationary CI engine with cardnol bio fuel blends. Int J Sci Eng Res 2:1

    Google Scholar 

  • McCormick RL, Williams A, Ireland J, Hayes R 2006 Effects of biodiesel blends on vehicle emissions: fiscal year 2006 annual operating plan milestone 10.4, National Renewable Energy Laboratory (NREL), Golden, CO.

  • Mekhilef S, Siga S, Saidur R (2011) A review on palm oil biodiesel as a source of renewable fuel. Renew Sust Energ rev 15:1937–1949

    Article  CAS  Google Scholar 

  • Mofijur M, Atabani AE, Masjuki HH, Kalam MA, Masum BM (2013) A study on the effects of promising edible and non-edible biodiesel feedstocks on engine performance and emissions production: a comparative evaluation. Renew Sust Energ rev 23:391–404

    Article  CAS  Google Scholar 

  • Mofijur M, Masjuki HH, Kalam MA, Rasul MG, Atabani AE, Hazrat MA, Mahmudul HM (2015a) Effect of biodiesel-diesel blending on physico-chemical properties of biodiesel produced from Moringa oleifera. Procedia Engineering 105:665–669

    Article  CAS  Google Scholar 

  • Mofijur M, Rasul M, Hyde J (2015b) Recent developments on internal combustion engine performance and emissions fuelled with biodiesel-diesel-ethanol blends. Procedia Engineering 105:658–664

    Article  CAS  Google Scholar 

  • Monirul I, Masjuki H, Kalam M, Zulkifli N, Rashedul H, Rashed M, Imdadul H, Mosarof M (2015) A comprehensive review on biodiesel cold flow properties and oxidation stability along with their improvement processes. RSC Adv 5:86631–86655

    Article  CAS  Google Scholar 

  • Ning Z, Cheung CS, Liu SX (2004) Experimental investigation of the effect of exhaust gas cooling on diesel particulate. J Aerosol Sci 35:333–345

    Article  CAS  Google Scholar 

  • Ozsezen AN, Canakci M, Sayin C (2008) Effects of biodiesel from used frying palm oil on the performance, injection, and combustion characteristics of an indirect injection diesel engine. Energy Fuel 22:1297–1305

    Article  CAS  Google Scholar 

  • Ozsezen AN, Canakci M, Turkcan A, Sayin C (2009) Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel 88:629–636

    Article  CAS  Google Scholar 

  • Palash S, Kalam M, Masjuki H, Masum B, Fattah IR, Mofijur M (2013) Impacts of biodiesel combustion on NO x emissions and their reduction approaches. Renew Sust Energ rev 23:473–490

    Article  CAS  Google Scholar 

  • Palash S, Kalam M, Masjuki H, Arbab M, Masum B, Sanjid A (2014) Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energy Convers Manag 77:577–585

    Article  CAS  Google Scholar 

  • Pali HS, Kumar N, Alhassan Y (2015) Performance and emission characteristics of an agricultural diesel engine fueled with blends of Sal methyl esters and diesel. Energy Convers Manag 90:146–153

    Article  CAS  Google Scholar 

  • Pinzi S, Rounce P, Herreros JM, Tsolakis A, Pilar Dorado M (2013) The effect of biodiesel fatty acid composition on combustion and diesel engine exhaust emissions. Fuel 104:170–182

    Article  CAS  Google Scholar 

  • Rahman MM, Hassan MH, Kalam MA, Atabani AE, Memon LA, Rahman SA (2014) Performance and emission analysis of Jatropha curcas and Moringa oleifera methyl ester fuel blends in a multi-cylinder diesel engine. J Clean Prod 65:304–310

    Article  CAS  Google Scholar 

  • Rahman MM, Rasul M, Hassan NMS, Hyde J (2016) Prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engines. Energies 9:403

    Article  Google Scholar 

  • Ruhul A, Kalam M, Masjuki H, Alabdulkarem A, Atabani A, Fattah IR, Abedin M (2016) Production, characterization, engine performance and emission characteristics of Croton megalocarpus and Ceiba pentandra complementary blends in a single-cylinder diesel engine. RSC Adv 6:24584–24595

    Article  CAS  Google Scholar 

  • Schönborn A, Ladommatos N, Williams J, Allan R, Rogerson J (2009) The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combust Flame 156:1396–1412

    Article  Google Scholar 

  • Shancita I, Masjuki H, Kalam M, Reham S, Ruhul A, Monirul I (2016) Evaluation of the characteristics of non-oxidative biodiesels: a FAME composition, thermogravimetric and IR analysis. RSC Adv 6:8198–8210

    Article  CAS  Google Scholar 

  • Sharma BK, Stipanovic AJ (2003) Development of a new oxidation stability test method for lubricating oils using high-pressure differential scanning calorimetry. Thermochim Acta 402:1–18

    Article  CAS  Google Scholar 

  • Sharma M, Agarwal AK, Bharathi K (2005) Characterization of exhaust particulates from diesel engine. Atmos Environ 39:3023–3028

    Article  CAS  Google Scholar 

  • Shi X, Pang X, Mu Y, He H, Shuai S, Wang J, Chen H, Li R (2006) Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmos Environ 40:2567–2574

    Article  CAS  Google Scholar 

  • Tinprabath P, Hespel C, Chanchaona S, Foucher F (2015) Influence of biodiesel and diesel fuel blends on the injection rate under cold conditions. Fuel 144:80–89

    Article  CAS  Google Scholar 

  • Wakil M, Masjuki H, Kalam M, Teoh Y, How H, Imtenan S (2015) Influence of engine operating variable on combustion to reduce exhaust emissions using various biodiesels blend. RSC Adv 5:100674–100681

    Article  CAS  Google Scholar 

  • Wang J, Cao L, Han S (2014) Effect of polymeric cold flow improvers on flow properties of biodiesel from waste cooking oil. Fuel 117(Part A):876–881

    Article  CAS  Google Scholar 

  • Yilmaz N, Vigil FM, Donaldson AB, Darabseh T (2014) Investigation of CI engine emissions in biodiesel–ethanol–diesel blends as a function of ethanol concentration. Fuel 115:790–793

    Article  CAS  Google Scholar 

  • Zhang J, Jing W, Roberts WL, Fang T (2013) Effects of ambient oxygen concentration on biodiesel and diesel spray combustion under simulated engine conditions. Energy 57:722–732

Download references

Acknowledgements

The authors would like to acknowledge the University of Malaya for financial support through grants RP016-2012E and FP032-2013A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Islam Mohammad Monirul or Mohammad Abdul Kalam.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Property of 20% of biodiesel blend with 0.03 wt% PMA satisfied with ASTM standard

• The addition of PMA slightly increased NOX emission of 20% of biodiesel blend

• PMA reduced the PM mass concentration and increased particle size of biodiesel blend

• The PMA additive decreased the volatile material in the soot

Appendix

Appendix

Table 7 Instrument accuracy and uncertainty percentage
Table 8 Sample calculation of % uncertainty

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monirul, I.M., Masjuki, H.H., Kalam, M.A. et al. Influence of polymethyl acrylate additive on the formation of particulate matter and NOX emission of a biodiesel–diesel-fueled engine. Environ Sci Pollut Res 24, 18479–18493 (2017). https://doi.org/10.1007/s11356-017-9333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9333-6

Keywords

Navigation