Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions

Abstract

Eight wastewater samples from a university campus were analysed between May and July of 2014 to determine the concentration of 14 natural and synthetic steroid hormones. An on-line solid-phase extraction combined with ultra-high performance liquid chromatography coupled with mass spectrometry (on-line SPE-UHPLC-MS/MS) was used as extraction, pre-concentration and detection method. In the samples studied, three oestrogens (17β-estradiol, estrone and estriol), two androgens (boldenone and testosterone), three progestogens (norgestrel, progesterone and norethisterone) and one glucocorticoid (prednisone) were detected. The removal of hormones was studied in primary and secondary constructed wetland mesocosms. The porous media of the primary constructed wetlands were palm tree mulch. These reactors were used to study the effect of water flow, i.e. horizontal (HF1) vs vertical (VF1). The latter was more efficient in the removal of 17β-estradiol (HF1: 30%, VF1: 50%), estrone (HF1: 63%, VF1: 85%), estriol (100% both), testosterone (HF1: 45%, VF1: 73%), boldenone (HF1:-77%, VF1: 100%) and progesterone (HF1: 84%, VF1: 99%). The effluent of HF1 was used as influent of three secondary constructed wetland mesocosms: two double-stage vertical flow constructed wetlands, one with gravel (VF2gravel) and one with palm mulch (VF2mulch), and a mineral-based, horizontal flow constructed wetland (HFmineral). VF2mulch was the most efficient of the secondary reactors, since it achieved the complete removal of the hormones studied with the exception of 17ß-estradiol. The significantly better removal of BOD and ammonia attained by VF2mulch suggests that the better aeration of mulch favoured the more efficient removal of hormones.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Association APH, Association AWW, Federation WPC (1981) Standard methods for the examination of water and wastewater: selected analytical methods approved and cited by the United States Environmental Protection Agency. American Public Health Association, Washington, DC

    Google Scholar 

  2. Ávila C, Nivala J, Olsson L et al (2014) Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration. Sci Total Environ 494–495:211–217. doi:10.1016/j.scitotenv.2014.06.128

    Article  CAS  Google Scholar 

  3. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296. doi:10.1016/j.cej.2010.01.007

    Article  CAS  Google Scholar 

  4. Bruch I, Fritsche J, Bänninger D et al (2011) Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour Technol 102:937–941. doi:10.1016/j.biortech.2010.09.041

    Article  CAS  Google Scholar 

  5. Cai K, Elliott CT, Phillips DH et al (2012) Treatment of estrogens and androgens in dairy wastewater by a constructed wetland system. Water Res 46:2333–2343. doi:10.1016/j.watres.2012.01.056

    Article  CAS  Google Scholar 

  6. Cai K, Phillips DH, Elliott CT et al (2013) Removal of natural hormones in dairy farm wastewater using reactive and sorptive materials. Sci Total Environ 461–462:1–9. doi:10.1016/j.scitotenv.2013.04.088

    Article  CAS  Google Scholar 

  7. Chen T-C, Yeh K-JC, Kuo W-C et al (2014) Estrogen degradation and sorption onto colloids in a constructed wetland with different hydraulic retention times. J Hazard Mater 277:62–68. doi:10.1016/j.jhazmat.2014.03.038

    Article  CAS  Google Scholar 

  8. Cooper P (2005) The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Sci Technol J Int Assoc Water Pollut Res 51:81–90

    Article  CAS  Google Scholar 

  9. Crews D, Willingham E, Skipper JK (2000) Endocrine disruptors: present issues, future directions. Q Rev Biol 75:243–260

    Article  CAS  Google Scholar 

  10. D’Ascenzo G, Di Corcia A, Gentili A et al (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ 302:199–209. doi:10.1016/S0048-9697(02)00342-X

    Article  Google Scholar 

  11. Dan TH, Quang LN, Chiem NH, Brix H (2011) Treatment of high-strength wastewater in tropical constructed wetlands planted with Sesbania sesban: horizontal subsurface flow versus vertical downflow. Ecol Eng 37:711–720. doi:10.1016/j.ecoleng.2010.07.030

    Article  Google Scholar 

  12. Dias ACV, Gomes FW, Bila DM et al (2015) Analysis of estrogenic activity in environmental waters in Rio de Janeiro state (Brazil) using the yeast estrogen screen. Ecotoxicol Environ Saf 120:41–47. doi:10.1016/j.ecoenv.2015.05.013

    Article  CAS  Google Scholar 

  13. Dixon A, Simon M, Burkitt T (2003) Assessing the environmental impact of two options for small-scale wastewater treatment: comparing a reedbed and an aerated biological filter using a life cycle approach. Ecol Eng 20:297–308. doi:10.1016/S0925-8574(03)00007-7

    Article  Google Scholar 

  14. Dordio AV, Carvalho AJP (2013) Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J Hazard Mater 252–253:272–292. doi:10.1016/j.jhazmat.2013.03.008

    Article  CAS  Google Scholar 

  15. Fuchs VJ, Mihelcic JR, Gierke JS (2011) Life cycle assessment of vertical and horizontal flow constructed wetlands for wastewater treatment considering nitrogen and carbon greenhouse gas emissions. Water Res 45:2073–2081. doi:10.1016/j.watres.2010.12.021

    Article  CAS  Google Scholar 

  16. Garmshausen J, Kloas W, Hoffmann F (2015) 17α-Ethinylestradiol can disrupt hemoglobin catabolism in amphibians. Comp Biochem Physiol Toxicol Pharmacol 171:34–40. doi:10.1016/j.cbpc.2015.03.004

    Article  CAS  Google Scholar 

  17. Gouamid M, Ouahrani MR, Bensaci MB (2013) Adsorption equilibrium, kinetics and thermodynamics of methylene blue from aqueous solutions using date palm leaves. Energy Procedia 36:898–907. doi:10.1016/j.egypro.2013.07.103

    Article  Google Scholar 

  18. Guedes-Alonso R, Montesdeoca-Esponda S, Sosa-Ferrera Z, Santana-Rodríguez JJ (2014) Liquid chromatography methodologies for the determination of steroid hormones in aquatic environmental systems. Trends Environ Anal Chem 3–4:14–27. doi:10.1016/j.teac.2014.10.001

    Article  CAS  Google Scholar 

  19. Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodríguez JJ (2015a) An on-line solid phase extraction method coupled with UHPLC-MS/MS for the determination of steroid hormone compounds in treated water samples from waste water treatment plants. Anal Methods. doi:10.1039/C5AY00807G

  20. Guedes-Alonso R, Sosa-Ferrera Z, Santana-Rodriguez JJ (2015b) On-line solid phase extractionmethod coupled with UHPLC-MS/MS for the determination of steroid hormone compounds in treated waters from wastewater treatment plants. Anal Methods. doi:10.1039/C5AY00807G

  21. Hansen P-D, Dizer H, Hock B et al (1998) Vitellogenin—a biomarker for endocrine disruptors. TrAC Trends Anal Chem 17:448–451. doi:10.1016/S0165-9936(98)00020-X

    Article  CAS  Google Scholar 

  22. Herrera-Melián JA, González-Bordón A, Martín-González MA et al (2014) Palm tree mulch as substrate for primary treatment wetlands processing high strength urban wastewater. J Environ Manag 139:22–31. doi:10.1016/j.jenvman.2013.11.051

    Article  CAS  Google Scholar 

  23. Herrera-Melián JA, Torres-Padrón ME, Betancor-Abreu A et al (2015) Clogging reduction and removal of hormone residues with laboratory-scale vertical flow organic-based filter and hybrid wetland. Int J Environ Sci Technol 12:1039–1052. doi:10.1007/s13762-013-0495-6

    Article  CAS  Google Scholar 

  24. Khanal SK, Xie B, Thompson ML et al (2006) Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environ Sci Technol 40:6537–6546. doi:10.1021/es0607739

    Article  CAS  Google Scholar 

  25. Knowles P, Dotro G, Nivala J, García J (2011) Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecol Eng 37:99–112. doi:10.1016/j.ecoleng.2010.08.005

    Article  Google Scholar 

  26. Lai KM, Johnson KL, Scrimshaw MD, Lester JN (2000) Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environ Sci Technol 34:3890–3894. doi:10.1021/es9912729

    Article  CAS  Google Scholar 

  27. Liu Z, Kanjo Y (2012) An innovative analytical method for estrogen sulfates without deconjugation procedure. KSCE J Civ Eng 16:919–924. doi:10.1007/s12205-012-1666-6

    Article  Google Scholar 

  28. Lizama Allende K, McCarthy DT, Fletcher TD (2014) The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis. Chem Eng J 246:217–228. doi:10.1016/j.cej.2014.02.035

    Article  CAS  Google Scholar 

  29. Martín-González MA, González-Díaz O, Susial P et al (2014) Reuse of Phoenix canariensis palm frond mulch as biosorbent and as precursor of activated carbons for the adsorption of Imazalil in aqueous phase. Chem Eng J 245:348–358. doi:10.1016/j.cej.2014.02.050

    Article  CAS  Google Scholar 

  30. Meijide FJ, Rey Vázquez G, Piazza YG et al (2016) Effects of waterborne exposure to 17β-estradiol and 4-tert-octylphenol on early life stages of the South American cichlid fish Cichlasoma dimerus. Ecotoxicol Environ Saf 124:82–90. doi:10.1016/j.ecoenv.2015.10.004

    Article  CAS  Google Scholar 

  31. Molle P, Liénard A, Grasmick A, Iwema A (2006) Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Res 40:606–612. doi:10.1016/j.watres.2005.11.026

    Article  CAS  Google Scholar 

  32. Nguyen TAH, Ngo HH, Guo WS et al (2014) Modification of agricultural waste/by-products for enhanced phosphate removal and recovery: potential and obstacles. Bioresour Technol 169:750–762. doi:10.1016/j.biortech.2014.07.047

    Article  CAS  Google Scholar 

  33. Nivala J, Wallace S, Headley T et al (2013) Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol Eng 61, Part B:544–554. doi:10.1016/j.ecoleng.2012.08.028

    Article  Google Scholar 

  34. Nouacer S, Hazourli S, Despas C, Hébrant M (2015) Sorption of polluting metal ions on a palm tree frond sawdust studied by the means of modified carbon paste electrodes. Talanta 144:318–323. doi:10.1016/j.talanta.2015.06.044

    Article  CAS  Google Scholar 

  35. Pessoa GP, de Souza NC, Vidal CB et al (2014) Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Sci Total Environ 490:288–295. doi:10.1016/j.scitotenv.2014.05.008

    Article  CAS  Google Scholar 

  36. Refsdal AO (2000) To treat or not to treat: a proper use of hormones and antibiotics. Anim Reprod Sci 60–61:109–119. doi:10.1016/S0378-4320(00)00094-4

    Article  Google Scholar 

  37. Rodríguez JJS, Hernández FJS, González JEG (2003) The effect of environmental and meteorological variables on atmospheric corrosion of carbon steel, copper, zinc and aluminium in a limited geographic zone with different types of environment. Corros Sci 45:799–815. doi:10.1016/S0010-938X(02)00081-1

    Article  Google Scholar 

  38. Sangster JL, Oke H, Zhang Y, Bartelt-Hunt SL (2015) The effect of particle size on sorption of estrogens, androgens and progestagens in aquatic sediment. J Hazard Mater 299:112–121. doi:10.1016/j.jhazmat.2015.05.046

    Article  CAS  Google Scholar 

  39. Shi W, Wang L, Rousseau DPL, Lens PNL (2010) Removal of estrone, 17α-ethinylestradiol, and 17ß-estradiol in algae and duckweed-based wastewater treatment systems. Environ Sci Pollut Res 17:824–833. doi:10.1007/s11356-010-0301-7

    Article  CAS  Google Scholar 

  40. Song H-L, Nakano K, Taniguchi T et al (2009) Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresour Technol 100:2945–2951. doi:10.1016/j.biortech.2009.01.045

    Article  CAS  Google Scholar 

  41. Tee HC, Seng CE, Noor AM, Lim PE (2009) Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Sci Total Environ 407:3563–3571. doi:10.1016/j.scitotenv.2009.02.017

    Article  CAS  Google Scholar 

  42. Ternes TA, Kreckel P, Mueller J (1999a) Behaviour and occurrence of estrogens in municipal sewage treatment plants—II. Aerobic batch experiments with activated sludge. Sci Total Environ 225:91–99. doi:10.1016/S0048-9697(98)00335-0

    Article  CAS  Google Scholar 

  43. Ternes TA, Stumpf M, Mueller J et al (1999b) Behavior and occurrence of estrogens in municipal sewage treatment plants—I. Investigations in Germany, Canada and Brazil. Sci Total Environ 225:81–90. doi:10.1016/S0048-9697(98)00334-9

    Article  CAS  Google Scholar 

  44. Vera I, García J, Sáez K et al (2011) Performance evaluation of eight years experience of constructed wetland systems in Catalonia as alternative treatment for small communities. Ecol Eng 37:364–371. doi:10.1016/j.ecoleng.2010.11.031

    Article  Google Scholar 

  45. Vera L, Martel G, Márquez M (2013) Two years monitoring of the natural system for wastewater reclamation in Santa Lucía, Gran Canaria Island. Ecol Eng 50:21–30. doi:10.1016/j.ecoleng.2012.08.001

    Article  Google Scholar 

  46. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. doi:10.1016/j.scitotenv.2006.09.014

    Article  CAS  Google Scholar 

  47. Vymazal J, Kröpfelová L (2015) Multistage hybrid constructed wetland for enhanced removal of nitrogen. Ecol Eng 84:202–208. doi:10.1016/j.ecoleng.2015.09.017

    Article  Google Scholar 

  48. Vymazal J, Březinová T, Koželuh M (2015) Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Sci Total Environ 536:625–631. doi:10.1016/j.scitotenv.2015.07.077

    Article  CAS  Google Scholar 

  49. Young-Rojanschi C, Madramootoo C (2014) Intermittent versus continuous operation of biosand filters. Water Res 49:1–10. doi:10.1016/j.watres.2013.11.011

    Article  CAS  Google Scholar 

  50. Zhang F-S, Xie Y-F, Li X-W et al (2015) Accumulation of steroid hormones in soil and its adjacent aquatic environment from a typical intensive vegetable cultivation of North China. Sci Total Environ 538:423–430. doi:10.1016/j.scitotenv.2015.08.067

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funds provided by the Spanish Ministry of Economy and Competitiveness, Research Project CTM2015-66095-C2-1-R. Rayco Guedes-Alonso thanks the University of Las Palmas de Gran Canaria (Spain) for his Ph.D. student grant.

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Alberto Herrera-Melián.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrera-Melián, J.A., Guedes-Alonso, R., Borreguero-Fabelo, A. et al. Study on the removal of hormones from domestic wastewaters with lab-scale constructed wetlands with different substrates and flow directions. Environ Sci Pollut Res 25, 20374–20384 (2018). https://doi.org/10.1007/s11356-017-9307-8

Download citation

Keywords

  • Hormone residues
  • Constructed wetland
  • Palm mulch
  • Horizontal flow
  • Vertical flow