Skip to main content

Advertisement

Log in

A bibliometric analysis of eutrophication literatures: an expanding and shifting focus

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This paper examined the eutrophication literatures from 1998 to 2015 using bibliometric techniques basing on the database of Science Citation Index. Bibliometric techniques, social network analysis, and mapping knowledge domains in this paper were used. The results revealed that article was the most used document type accounting for 94.79% (14,006) of the records. With the rapid development of eutrophication domain after 2004, the annual article publishing amount also grew notably in each country, with the list of US tops. International cooperation was not enough to compare with that between institutions. An author keyword analysis showed that “phosphorus,” “nutrients,” “nitrogen,” “water quality,” “phytoplankton,” and “sediment” were the most popular keywords. And it was also found that climate change, life cycle assessment, and chlorophyll a appear with high frequency in recent years, indicating that the eutrophication mechanism analysis might turn from uni-factor microresearch to multi-factor macroresearch, and the eutrophication management research tends to be whole-process management research. In addition, the future focuses of research directions, including (1) eutrophication and its ecosystem response, (2) eutrophication management, (3) eutrophication and climate change interactions, (4) eutrophication monitoring and forecast, and (5) ecological restoration of eutrophication. These findings are useful for the future endeavor of eutrophication academic research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuar Coasts 25(4):704–726

    Article  Google Scholar 

  • Barbosa FG, Schneck F (2015) Characteristics of the top-cited papers in species distribution predictive models. Ecol Model 313:77–83

    Article  Google Scholar 

  • Binzer A, Guill C, Rall BC et al (2015) Interactive effects of warming, eutrophication and size-structure: impacts on biodiversity and food-web structure. Glob Chang Biol 22:220–227

    Article  Google Scholar 

  • Blindow I (1992) Decline of charophytes during eutrophication: comparison with angiosperms. Freshw Biol 28(1):9–14

    Article  Google Scholar 

  • Bu F, Xu X (2013) Planted floating bed performance in treatment of eutrophic river water. Environ Monit Assess 185(11):9651–9662

    Article  CAS  Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. J Freshw Biol 50:291–300

    Article  Google Scholar 

  • Catalálópez F, Alonsoarroyo A, Aleixandrebenavent R et al (2012) Coauthorship and institutional collaborations on cost-effectiveness analyses: a systematic network analysis. PLoS One 7(5):e38012

    Article  Google Scholar 

  • Chen CM (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J China Soc Sci Tech Inf 57(3):359–377

    Article  Google Scholar 

  • Chen CM, Hu ZG, Liu SB et al (2012) Emerging trends in regenerative medicine: a scientometric analysis in Citespace. Expert Opin Biol Ther 12(5):593–608

    Article  Google Scholar 

  • Dahanayaka DDGL, Wijeyaratne MJS, Tonooka H et al (2014) Monitoring and predicting eutrophication of Sri Lankan inland waters using ASTER satellite data. Proc SPIE Int Soc Opt Eng 9240:924001–924011

    Google Scholar 

  • Du HB, Wei LX, Brown MA et al (2013) A bibliometric analysis of recent energy efficiency literatures: an expanding and shifting focus. Energ Effic 6(1):177–190

    Article  Google Scholar 

  • Du H, Li BL, Brown MA et al (2015) Expanding and shifting trends in carbon market research: aquantitative bibliometric study. J Clean Prod 103:104–111

    Article  Google Scholar 

  • Elser JJ, Bracken ME, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  Google Scholar 

  • Eriksson PG, Weisner SEB (1997) Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. J Environ Qual 26:905–910

    Article  CAS  Google Scholar 

  • Fragoso CR Jr, Marques DMLM, Ferreira TF et al (2011) Potential effects of climate change and eutrophication on a large subtropical shallow lake. Environ Model Softw 26(11):1337–1348

    Article  Google Scholar 

  • Fu HZ, Ho YS, Sui YM et al (2010a) A bibliometric analysis of solid waste research during the period 1993–2008. Waste Manag 30:2410–2417

    Article  Google Scholar 

  • Fu HZ, Wang MH, Ho YS (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992–2011. Sci Total Environ 443(3):757–765

    Article  CAS  Google Scholar 

  • Gallego A, Rodríguez L, Hospido A et al (2010) Development of regional characterization factors for aquatic eutrophication. Int J Life Cycle Assess 15(1):32–43

    Article  CAS  Google Scholar 

  • Gao W, Chen Y, Liu Y et al (2014) Scientometric analysis of phosphorus research in eutrophic lakes. Scientometrics 102(3):1–14

    Google Scholar 

  • Greenberg SA (2009) How citation distortions create unfounded authority: analysis of a citation network. BMJ 339:b2680

    Article  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol Oceanogr 51(51):364–376

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) (2007) Working group III report. Climate change 2007. United Nations Environmental Programme, New York

    Book  Google Scholar 

  • Kampbell DH, An YJ, Williams VR (2001) Influence of methyl ter-butyl ether on lake water algae. Bull Environ Contam Toxicol 67(4):574–579

    CAS  Google Scholar 

  • Kangro K, Olli K, Tamminen T et al (2007) Species-specific responses of a cyanobacteria-dominated phytoplankton community to artificial nutrient limitation in the Baltic Sea. Mar Ecol Prog 336:15–27

    Article  CAS  Google Scholar 

  • Körner S (2002) Loss of submerged macrophytes in shallow lakes in north-eastern Germany. Int Rev Hydrobiol 87(4):375–384

    Article  Google Scholar 

  • Kosten S, Huszar VLM, Becares E et al (2012) Warmer climates boost cyanobacterial dominance in shallow lakes. Glob Chang Biol 18(1):118–126

    Article  Google Scholar 

  • Li J, Wang MH, Ho YS (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77(1–2):13–20

    Article  Google Scholar 

  • Mcdowell RW, Hamilton DP (2013) Nutrients and eutrophication: introduction. Mar & Freshw Res 64(5):iii–ivi

    Article  Google Scholar 

  • Michelakaki M, Kitsiou D (2005) Estimation of anisotropies in chlorophyll a spatial distributions based on satellite data and variography. Global Nest 7(2):204–211

    Google Scholar 

  • Moss B, Jeppesen E, Sondergaard M et al (2013) Nitrogen, macrophytes, shallow lakes and nutrient limitation: resolution of a current controversy? Hydrobiologia 710(1):3–21

    Article  CAS  Google Scholar 

  • Newman ME (2004) Coauthorship networks and patterns of scientific collaboration. Proc Natl Acad Sci U S A 101:5200–5205

    Article  CAS  Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320(5872):57–58

    Article  CAS  Google Scholar 

  • Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46(5):1349–1363

    Article  CAS  Google Scholar 

  • Petersen JK, Saurel C, Nielsen P et al (2015) The use of shellfish for eutrophication control. Aquac Int 24:857–878 1–22

    Article  Google Scholar 

  • Pritchard A (1969) Statistical bibliography or bibliometrics? J Doc 25:348–349

    Google Scholar 

  • Qin BQ, Gao G, Zhu GW et al (2012) Lake eutrophication and its ecosystem response. Chin Sci Bull 58(9):961–970

    Article  Google Scholar 

  • Rabalais NN, Turner RE, Díaz RJ et al (2009) Global change and eutrophication of coastal waters. ICES J Mar Sci 66(7):1528–1537

    Article  Google Scholar 

  • Rabalais NN, Cai WJ, Carstensen J et al (2014) Eutrophication-driven deoxygenation in the coastal ocean. Oceanography 27(27):172–183

    Article  Google Scholar 

  • Reddy KR, Patrick WH, Lindau CW (1989) Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnol Oceanogr 34(6):1004–1013

    Article  CAS  Google Scholar 

  • Schefer M (1998) Ecology of shallow lakes. Kluwer Academic Publishers, Dordretcht

    Google Scholar 

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes: natural mechanisms compensate for deficiencies of nitrogen and carbon in eutrophied lakes. Science 195:260–262

    Article  CAS  Google Scholar 

  • Schindler DW (2012) The dilemma of controlling cultural eutrophication of lakes. Proceedings. Biol Sci 279:4322–4333

    Article  CAS  Google Scholar 

  • Schindler DW, Vallentyne JR (2008) The algal bowl: overfertilization of the world’s freshwaters and estuaries. University of Alberta Press, Edmonton

    Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL et al (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole ecosystem experiment. Proc Natl Acad Sci U S A 105:11254–11258

    Article  CAS  Google Scholar 

  • Scott JT, McCarthy MJ (2010) Nitrogen fixation may not balance the nitrogen pool in lakes over timescales relevant to eutrophication management. Limnol Oceanogr 55:1265–1270

    Article  CAS  Google Scholar 

  • Seppälä J, Knuuttila S, Silvo K (2004) Eutrophication of aquatic ecosystems - a new method for calculating the potential contributions of nitrogen and phosphorus. Int J Life Cycle Assess 9(2):90–100

  • Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci Pollut Res 10(2):126–139

    Article  CAS  Google Scholar 

  • Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24(4):201–207

    Article  Google Scholar 

  • Sondergaard M, Bjerring R, Jeppesen E (2013) Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710:95–107

    Article  CAS  Google Scholar 

  • Tang XM, Gao G, Chao JY et al (2010) Dynamics of organic-aggregate associated bacterial communities and related environmental factors in Lake Taihu, a large eutrophic shallow lake in China. Limnol Oceanogr 55:469–480

    Article  CAS  Google Scholar 

  • Tang X, Wu M, Yang W et al (2012) Ecological strategy for eutrophication control. Water Air Soil Pollut 223(2):723–737

    Article  CAS  Google Scholar 

  • Wang Y, Lai N, Zuo J et al (2016) Characteristics and trends of research on waste-to-energy incineration: a bibliometric analysis, 1999–2015. Renew Sust Energ Rev 66:95–104

    Article  CAS  Google Scholar 

  • Yi H, Jie W (2011) A bibliometric study of the trend in articles related to eutrophication published in science citation index. Scientometrics 89:919–927

    Article  Google Scholar 

  • Zhang L, Wang MH, Hu J et al (2010) A review of published wetland research, 1991–2008: ecological engineering and ecosystem restoration. Ecol Eng 36(8):973–980

    Article  Google Scholar 

  • Zhang Y, Yao X, Qin B (2016) A critical review of the development, current hotspots, and future directions of lake taihu research from the bibliometrics perspective. Environ Sci Pollut Res 23:12811–12821 1–11

    Article  CAS  Google Scholar 

  • Zhu L, Li Z, Ketola T (2011) Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China’s rural area. Ecol Eng 37(10):1460–1466

    Article  Google Scholar 

Download references

Acknowledgements

This material is based in part upon work supported by the National Science Foundation of China under Grant No. 51409189. Any findings, conclusions, and opinions expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The writers also thank the reviewers for their detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Nan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Nan, R. A bibliometric analysis of eutrophication literatures: an expanding and shifting focus. Environ Sci Pollut Res 24, 17103–17115 (2017). https://doi.org/10.1007/s11356-017-9294-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9294-9

Keywords

Navigation