Skip to main content
Log in

Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this paper, several extreme learning machine (ELM) models, including standard extreme learning machine with sigmoid activation function (S-ELM), extreme learning machine with radial basis activation function (R-ELM), online sequential extreme learning machine (OS-ELM), and optimally pruned extreme learning machine (OP-ELM), are newly applied for predicting dissolved oxygen concentration with and without water quality variables as predictors. Firstly, using data from eight United States Geological Survey (USGS) stations located in different rivers basins, USA, the S-ELM, R-ELM, OS-ELM, and OP-ELM were compared against the measured dissolved oxygen (DO) using four water quality variables, water temperature, specific conductance, turbidity, and pH, as predictors. For each station, we used data measured at an hourly time step for a period of 4 years. The dataset was divided into a training set (70%) and a validation set (30%). We selected several combinations of the water quality variables as inputs for each ELM model and six different scenarios were compared. Secondly, an attempt was made to predict DO concentration without water quality variables. To achieve this goal, we used the year numbers, 2008, 2009, etc., month numbers from (1) to (12), day numbers from (1) to (31) and hour numbers from (00:00) to (24:00) as predictors. Thirdly, the best ELM models were trained using validation dataset and tested with the training dataset. The performances of the four ELM models were evaluated using four statistical indices: the coefficient of correlation (R), the Nash-Sutcliffe efficiency (NSE), the root mean squared error (RMSE), and the mean absolute error (MAE). Results obtained from the eight stations indicated that: (i) the best results were obtained by the S-ELM, R-ELM, OS-ELM, and OP-ELM models having four water quality variables as predictors; (ii) out of eight stations, the OP-ELM performed better than the other three ELM models at seven stations while the R-ELM performed the best at one station. The OS-ELM models performed the worst and provided the lowest accuracy; (iii) for predicting DO without water quality variables, the R-ELM performed the best at seven stations followed by the S-ELM in the second place and the OP-ELM performed the worst with low accuracy; (iv) for the final application where training ELM models with validation dataset and testing with training dataset, the OP-ELM provided the best accuracy using water quality variables and the R-ELM performed the best at all eight stations without water quality variables. Fourthly, and finally, we compared the results obtained from different ELM models with those obtained using multiple linear regression (MLR) and multilayer perceptron neural network (MLPNN). Results obtained using MLPNN and MLR models reveal that: (i) using water quality variables as predictors, the MLR performed the worst and provided the lowest accuracy in all stations; (ii) MLPNN was ranked in the second place at two stations, in the third place at four stations, and finally, in the fourth place at two stations, (iii) for predicting DO without water quality variables, MLPNN is ranked in the second place at five stations, and ranked in the third, fourth, and fifth places in the remaining three stations, while MLR was ranked in the last place with very low accuracy at all stations. Overall, the results suggest that the ELM is more effective than the MLPNN and MLR for modelling DO concentration in river ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdul-Aziz OI, Ishtiaq KS (2014) Robust empirical modelling of dissolved oxygen in small rivers and streams: scaling by a single reference observation. J Hydrol 511:648–657. doi:10.1016/j.jhydrol.2014.02.022

    Article  CAS  Google Scholar 

  • Abdullah SS, Malek MA, Abdullah NS, Kisi O, Yap KS (2015) Extreme learning machines: a new approach for prediction of reference evapotranspiration. J Hydrol 527:184–195. doi:10.1016/j.jhydrol.2015.04.073

    Article  Google Scholar 

  • Akkoyunlu A, Altun H, Cigizoglu H (2011) Depth-integrated estimation of dissolved oxygen in a lake. ASCE J Environ Eng 137(10):961–967. doi:10.1061/(ASCE)EE.1943-7870.0000376

    Article  CAS  Google Scholar 

  • Akusok A, Veganzones D, Miche Y, Björk K-M, du Jardin P, Severin E, Lendasse A (2015) MD-ELM: originally mislabeled samples detection using OP-ELM model. Neurocomputing 159:242–250. doi:10.1016/j.neucom.2015.01.055

    Article  Google Scholar 

  • Alizadeh MJ, Kavianpour MR (2015) Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Mar Pollut Bull 98:171–178. doi:10.1016/j.marpolbul.2015.06.052

    Article  CAS  Google Scholar 

  • Ay M, Kisi O (2012) Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. ASCE J Environ Eng 138(6):654–662. doi:10.1061/ (ASCE) EE.1943-7870.0000511

    Article  CAS  Google Scholar 

  • Ay M, Kisi O (2016) Estimation of dissolved oxygen by using neural networks and neuro fuzzy computing techniques. KSCE J Civ Eng 00(0):1–9. doi:10.1007/s12205-016-0728-6

    CAS  Google Scholar 

  • Deo RC, Şahin M (2015) Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia. Atmos Res 153:512–525. doi:10.1016/j.atmosres.2013.11.002

    Article  Google Scholar 

  • Deo RC, Şahin M (2016) An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queenslad. Environ Monit Assess 188:90. doi:10.1007/s10661-016-5094-9

    Article  Google Scholar 

  • Diamantopoulou MJ, Antonopoulos VZ, Papamichail DM (2007) Cascade correlation artificial neural networks for estimating missing monthly values of water quality parameters in rivers. Water Resour Manag 21:649–662. doi:10.1007/s11269-006-9036-0

    Article  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32:407–499. doi:10.1214/009053604000000067

    Article  Google Scholar 

  • Evrendilek F, Karakaya N (2014a) Monitoring diel dissolved oxygen dynamics through integrating wavelet denoising and temporal neural networks. Environ Monit Assess 186:1583–1591. doi:10.1007/s10661-013-3476-9

    Article  CAS  Google Scholar 

  • Evrendilek F, Karakaya N (2014b) Regression model-based predictions of diel, diurnal and nocturnal dissolved oxygen dynamics after wavelet denoising of noisy time series. Physica A 404:8–15. doi:10.1016/j.physa.2014.02.062

    Article  CAS  Google Scholar 

  • Evrendilek F, Karakaya N (2015) Spatiotemporal modeling of saturated dissolved oxygen through regressions after wavelet denoising of remotely and proximally sensed data. Earth Sci Inf 8:247–254. doi:10.1007/s12145-014-0148-4

    Article  Google Scholar 

  • Faruk DÖ (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng Appl Artif Intell 23:586–594. doi:10.1016/j.engappai.2009.09.015

    Article  Google Scholar 

  • Grigorievskiy A, Miche Y, Ventelä AM, Séverin E, Lendasse A (2014) Long-term time series prediction using OP-ELM. Neural Netw 51:50–56. doi:10.1016/j.neunet.2013.12.002

    Article  Google Scholar 

  • Gulgundi MS, Shetty A (2016) Identification and apportionment of pollution sources to groundwater quality. Environ Process 3:451–461. doi:10.1007/s40710-016-0160-4

    Article  CAS  Google Scholar 

  • Haykin S (1999) Neural networks a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Heddam S (2014a) Generalized regression neural network (GRNN) based approach for modelling hourly dissolved oxygen concentration in the upper Klamath River, Oregon, USA. Environ Techno 35(13):1650–1657. doi:10.1080/09593330.2013.878396

    Article  CAS  Google Scholar 

  • Heddam S (2014b) Modelling hourly dissolved oxygen concentration (DO) using two different adaptive neurofuzzy inference systems (ANFIS): a comparative study. Environ Monit Assess 186:597–619. doi:10.1007/s10661-013-3402-1

    Article  CAS  Google Scholar 

  • Heddam S (2014c) Modelling hourly dissolved oxygen concentration (DO) using dynamic evolving neural-fuzzy inference system (DENFIS) based approach: case study of Klamath River at Miller Island boat ramp, Oregon, USA. Environ Sci Pollut Res 21:9212–9227. doi:10.1007/s11356-014-2842-7

    Article  CAS  Google Scholar 

  • Heddam S (2016a) Simultaneous modelling and forecasting of hourly dissolved oxygen concentration (DO) using radial basis function neural network (RBFNN) based approach: a case study from the Klamath River, Oregon, USA. Model Earth Syst Environ 2:135. doi:10.1007/s40808-016-0197-4

    Article  Google Scholar 

  • Heddam S (2016b) Fuzzy neural network (EFuNN) for modelling dissolved oxygen concentration (DO). In: Kahraman C, Sari IU (eds) Intelligence Systems in Environmental Management: Theory and Applications, Intelligent Systems Reference Library 113, pp 231–253. doi:10.1007/978-3-319-42993-9_11

  • Heddam S (2016c) Use of optimally pruned extreme learning machine (OP-ELM) in forecasting dissolved oxygen concentration (DO) several hours in advance: a case study from the Klamath River, Oregon, USA. Environ Process 3(4):909–937. doi:10.1007/s40710-016-0172-0

    Article  CAS  Google Scholar 

  • Heddam S (2016d) New modelling strategy based on radial basis function neural network (RBFNN) for predicting dissolved oxygen concentration using the components of the Gregorian calendar as inputs: case study of Clackamas River, Oregon, USA. Model. Earth Syst. Environ 2:167. doi:10.1007/s40808-016-0232-5

    Article  Google Scholar 

  • Heddam S (2016e) Secchi disk depth estimation from water quality parameters: artificial neural network versus multiple linear regression models? Environ Process 3(1):525–536. doi:10.1007/s40710-016-0144-4

    Article  Google Scholar 

  • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. doi:10.1016/0893-6080(91)90009-T

    Article  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal Approximators. Neural Netw 2:359–366. doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  • Huang G (2015) What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput 7:263–278. doi:10.1007/s12559-015-9333-0

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE Proceedings of International Joint Conference on Neural Networks, vol. 2, pp 985–990. doi:10.1109/IJCNN.2004.1380068

  • Huang GB, Chen L, Siew CK (2006a) Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans Neural Netw 17(4):879–892. doi:10.1109/TNN.2006.875977

    Article  Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2006b) Extreme learning machine: theory and applications. Neurocomputing 70(1–3):489–501. doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  • Huang GB, Wang DH, Lan Y (2011) Extreme learning machines: a survey. Int J Mach Learn Cybern 2:107–122. doi:10.1007/s13042-011-0019-y

    Article  Google Scholar 

  • Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern Part B Cybern 42:513–529. doi:10.1109/TSMCB.2011.2168604

    Article  Google Scholar 

  • Huang G, Huang GB, Song S, You K (2015) Trends in extreme learning machines: a review. Neural Netw 61:32–48. doi:10.1016/j.neunet.2014.10.001

    Article  Google Scholar 

  • Kisi O, Akbari N, Sanatipour M, Hashemi A, Teimourzadeh K, Shiri J (2013) Modeling of dissolved oxygen in river water using artificial intelligence techniques. J Environ Inform 22(2):92–101. doi:10.3808/jei.201300248

    Article  Google Scholar 

  • Legates DR, McCabe GJ (1999) Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998WR900018

    Article  Google Scholar 

  • Liang NY, Huang GB, Saratchandran P, Sundararajan N (2006) A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans Neural Netw 17:1411–1423. doi:10.1109/TNN.2006.880583

    Article  Google Scholar 

  • Lima AR, Cannon AJ, Hsieh WW (2016) Forecasting daily streamflow using online sequential extreme learning machines. J Hydrol 537:431–443. doi:10.1016/j.jhydrol.2016.03.017

    Article  Google Scholar 

  • Liu S, Yan M, Tai H, Xu L, Li D (2012) Prediction of dissolved oxygen content in aquaculture of hyriopsis cumingii using Elman neural network. Li D, Chen Y (eds) Computer and Computing Technologies in Agriculture V (CCTA) 2011, Part III. IFIP Advances in Information and Communication Technology vol. 370, pp 508–518. doi:10.1007/978-3-642-27275-2-57.

  • Liu S, Xu L, Li D, Li Q, Jiang Y, Tai H, Zeng L (2013) Prediction of dissolved oxygen content in river crab culture based on least squares support vector regression optimized by improved particle swarm optimization. Comput Electron Agric 95:82–91. doi:10.1016/j.compag.2013.03.009

    Article  Google Scholar 

  • Liu S, Xu L, Jiang Y, Li D, Chen Y, Li Z (2014) A hybrid WA-CPSO-LSSVR model for dissolved oxygen content prediction in crab culture. Eng Appl Artif Intell 29:114–124. doi:10.1016/j.engappai.2013.09.019

    Article  Google Scholar 

  • Miche Y, Sorjamaa A, Lendasse A (2008a) OP-ELM: theory, experiments and a toolbox. In: Proceedings of the international conference on artificial neural networks. Lecture Notes in Computer Science, vol. 5163, Prague, pp 145–154. doi:10.1007/978-3-540-87536-9_16.

  • Miche Y, Bas P, Jutten C, Simula O, Lendasse A (2008b) A methodology for building regression models using extreme learning machine: OP-ELM. In: ESANN 2008, European Symposium on Artificial Neural Networks, Bruges

  • Miche Y, Sorjamaa A, Bas P, Simula O, Jutten C, Lendasse A (2010) OP-ELM: optimally pruned extreme learning machine. IEEE Trans Neural Netw 21(1):158–162. doi:10.1109/TNN.2009.2036259

    Article  Google Scholar 

  • Moreno R, Corona F, Lendasse A, Graña M, Galvão LS (2014) Extreme learning machines for soybean classification in remote sensing hyperspectral images. Neurocomputing 128:207–216. doi:10.1016/j.neucom.2013.03.057

    Article  Google Scholar 

  • Pouzols FM, Lendasse A (2010a) Evolving fuzzy optimally pruned extreme learning machine: a comparative analysis. IEEE Int Conf Fuzzy Syst (FUZZ):1–8. doi:10.1109/FUZZY.2010.5584327

  • Pouzols FM, Lendasse A (2010b) Evolving fuzzy optimally pruned extreme learning machine for regression problems. Evol Syst 1:43–58. doi:10.1007/s12530-010-9005-y

    Article  Google Scholar 

  • Ranković V, Radulović J, Radojević I, Ostojić A, Čomić L (2012) Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. J Hydro Inform 14(1):167–179. doi:10.2166/hydro.2011.084

    Article  Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland PDP, Research Group (eds) Parallel distributed processing: explorations in the microstructure of cognition. Foundations, vol. I. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  • Shiri J, Shamshirband S, Kisi O, Karimi S, Bateni SM, Nezhad SH, Hashemi A (2016) Prediction of water-level in the Urmia Lake using the extreme learning machine approach. Water Resour Manag. doi:10.1007/s11269-016-1480-x

  • Similä T, Tikka J (2005) Multiresponse sparse regression with application to multidimensional scaling. In: Artificial neural networks: formal models and their applications-ICANN 2005, vol. 3697/2005, pp. 97–102. doi:10.1007/11550907_16

  • Singh RP, Dabas N, Chaudhary V, Nagendra (2016) Online sequential extreme learning machine for watermarking in DWT domain. Neurocomputing 174:238–249. doi:10.1016/j.neucom.2015.03.115

    Article  Google Scholar 

  • Sorjamaa A, Miche Y, Weiss R, Lendasse A (2008) Long-term prediction of time series using NNE-based projection and OP-ELM. In: Proceedings of the IEEE international joint conference on neural networks (IJCNN), Hong Kong, pp 2674–2680. doi:10.1109/IJCNN.2008.4634173.

  • Sovilj D, Sorjamaa A, Yu Q, Miche Y, Séverin E (2010) OPELM and OPKNN in long-term prediction of time series using projected input data. Neurocomputing 73:1976–1986. doi:10.1016/j.neucom.2009.11.033

    Article  Google Scholar 

  • Wang X, Han M (2014) Online sequential extreme learning machine with kernels for nonstationary time series prediction. Neurocomputing 145:90–97. doi:10.1016/j.neucom.2014.05.068

    Article  Google Scholar 

  • Wang Y, Zheng T, Zhao Y, Jiang J, Wan YG, Guo L, Wang P (2013) Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China. Environ Sci Pollut Res 20:8909–8923. doi:10.1007/s11356-013-1874-8

    Article  Google Scholar 

  • Xu L, Liu S (2013) Study of short-term water quality prediction model based on wavelet neural network. Math Comput Model 58:807–813. doi:10.1016/j.mcm.2012.12.023

    Article  Google Scholar 

  • Yadav B, Ch S, Mathur S, Adamowski J (2016) Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: a case study in Neckar River, Germany. Measurement 92:433–445. doi:10.1016/j.measurement.2016.06.042

    Article  Google Scholar 

  • Yaseen ZM, Jaafar O, Deo RC, Kisi O, Adamowski J, Quilty J, El-shafie A (2016) Boost stream-flow forecasting model with extreme learning machine data-driven: a case study in a semi-arid region in Iraq. J Hydrol. doi:10.1016/j.jhydrol.2016.09.035

Download references

Acknowledgments

We would like to thank all scientists from USGS for allowing permission for using the data that made this study possible. Also, we are very grateful to all scientists which made the access of ELM Matlab codes used in this study. Once again, we would like to thank anonymous reviewers and the editor of Environmental Science and Pollution Research for their invaluable comments and suggestions on the contents of the manuscript which significantly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salim Heddam.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding this manuscript.

Additional information

Responsible editor: Marcus Schulz

Electronic supplementary material

ESM 1

(DOCX 81 kb)

The online version of this article contains supplementary data, which is available to authorized users.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heddam, S., Kisi, O. Extreme learning machines: a new approach for modeling dissolved oxygen (DO) concentration with and without water quality variables as predictors. Environ Sci Pollut Res 24, 16702–16724 (2017). https://doi.org/10.1007/s11356-017-9283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9283-z

Keywords

Navigation