Skip to main content

Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid

Abstract

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Akcil A, Erust C, Ozdemiroglu S, Fonti V, Beolchini F (2015) A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J Clean Prod 86:24–36

    Article  CAS  Google Scholar 

  • Alonso Castillo ML, Vereda Alonso E, Siles Cordero MT, Cano Pavón JM, García De Torres A (2011) Fractionation of heavy metals in sediment by using microwave assisted sequential extraction procedure and determination by inductively coupled plasma mass spectrometry. Microchem J 98:234–239

    Article  CAS  Google Scholar 

  • Amani H (2015) Study of enhanced oil recovery by rhamnolipids in a homogeneous 2D micromodel. J Pet Sci Eng 128:212–219

    Article  CAS  Google Scholar 

  • Ammami MT, Portet-Koltalo F, Benamar A, Duclairoir-Poc C, Wang H, Le Derf F (2015) Application of biosurfactants and periodic voltage gradient for enhanced electrokinetic remediation of metals and PAHs in dredged marine sediments. Chemosphere 125:1–8

    Article  CAS  Google Scholar 

  • Champion JT, Gilkey JC, Lamparski H, Retterer J, Miller RM (1995) Electron microscopy of rhamnolipid (biosurfactant) morphology: effects of pH, cadmium, and octadecane. J Colloid Interface Sci 170:569–574

    Article  CAS  Google Scholar 

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 52:1–31

    Article  Google Scholar 

  • Detzner HD, Schramm W, Döring U, Bode W (1998) New technology of mechanical treatment of dredged material from Hamburg Harbour. Water Sci Technol 37:337–343

    Article  CAS  Google Scholar 

  • Di Palma L, Mecozzi R (2007) Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents. J Hazard Mater 147:768–775

    Article  CAS  Google Scholar 

  • Diaz MA, De Ranson IU, Dorta B, Banat IM, Blazquez ML, Gonzalez F, Muñoz JA, Ballester A (2015) Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil Sediment Contam 24:16–29

    Article  CAS  Google Scholar 

  • Elshikh M, Funston S, Chebbi A, Ahmed S, Marchant R, Banat IM (2017) Rhamnolipids from non-pathogenic Burkholderia thailandensis E264: physicochemical characterization, antimicrobial and antibiofilm efficacy against oral hygiene related pathogens. New Biotechnol 36:26–36

    Article  CAS  Google Scholar 

  • Favas PJC, Sarkar SK, Rakshit D (2015) Geochemical fractionation of trace elements in stream sediments contaminated by mining activity. Clean-Soil, Air, Water 43:446–455

    Article  CAS  Google Scholar 

  • Förstner U, Wittmann GTW (1979) Metal pollution in the aquatic environment. Springer-Verlag, pp 163–168

  • Ghrefat H, Yusuf N (2006) Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere 65:2114–2121

    Article  CAS  Google Scholar 

  • Greenway GM, Song QJ (2002) Heavy metal speciation in the composting process. J Environ Monit 4:300–305

    Article  CAS  Google Scholar 

  • His E, Beiras R, Seaman M (2000) The assessment of marine pollution-bioassays with bivalve embryos and larvae. Adv Mar Bio 37:1–178

    Google Scholar 

  • Ishigami Y, Suzuki S (1997) Development of biochemicals-functionalization of biosurfactants and natural dyes. Prog Org Coat 31:51–61

    Article  CAS  Google Scholar 

  • Javed MB, Kachanoski G, Siddique T (2013) A modified sequential extraction method for arsenic fractionation in sediments. Anal Chim Acta 787:102–110

    Article  CAS  Google Scholar 

  • Kiran GS, Thomas TA, Selvin J (2010) Production of a new glycolipid biosurfactant from marine Nocardiopsis lucentensis MSA04 in solid-state cultivation. Colloids Surf B 78:8–16

    Article  CAS  Google Scholar 

  • Leleyter L, Rousseau C, Biree L, Baraud F (2012) Comparison of EDTA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. J Geochem Explor 116-117:51–59

    Article  CAS  Google Scholar 

  • Liu ZF, Yu MD, Zeng GM, Li M, Zhang JC, Zhong H, Liu Y, Shao BB, Li ZG, Wang ZQ, Liu GS, Yang X (2017) Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. Environ Sci Pollut Res 24:1230–1240

    Article  CAS  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Geret F, Roméo M, Marmier N (2013) Comparison of mineral-based amendments for ex-situ stabilization of trace elements (As, Cd, Cu, Mo, Ni, Zn) in marine dredged sediments: a pilot-scale experiment. J Hazard Mater 252-253:213–219

    Article  CAS  Google Scholar 

  • Miao S, Dashtbozorg SS, Callow NV, Ju L (2015) Rhamnolipids as platform molecules for production of potential anti-zoospore agrochemicals. J Agr Food Chem 63:3367–3376

    Article  CAS  Google Scholar 

  • Modak DP, Singh KP, Chandra H, Ray PK (1992) Mobile and bound forms of trace metals in sediments of the lower ganges. Water Res 26:1541–1548

    Article  CAS  Google Scholar 

  • Moon DH, Lee J, Wazne M, Park J (2012) Assessment of soil washing for Zn contaminated soils using various washing solutions. J Ind Eng Chem 18:822–825

    Article  CAS  Google Scholar 

  • Ochoa-Loza FJ, Noordman WH, Jannsen DB, Brusseau ML, Maier RM (2007) Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil. Chemosphere 66:1634–1642

    Article  CAS  Google Scholar 

  • Pandey M, Tripathi S, Pandey AK, Tripathi BD (2014) Risk assessment of metal species in sediments of the river ganga. Catena 122:140–149

    Article  CAS  Google Scholar 

  • Pedersen KB, Jensen PE, Ottosen LM, Lejon T (2015) An optimised method for electrodialytic removal of heavy metals from harbour sediments. Electrochim Acta 173:432–439

    Article  CAS  Google Scholar 

  • Peng J, Song Y, Yuan P, Cui X, Qiu G (2009) The remediation of heavy metals contaminated sediment. J Hazard Mater 161:633–640

    Article  CAS  Google Scholar 

  • Ramanathan T, Ting Y (2015) Selection of wet digestion methods for metal quantification in hazardous solid wastes. J Environ Chem Eng 3:1459–1467

    Article  CAS  Google Scholar 

  • Salomons W, Förstner U (2008) Trace metal analysis on polluted sediments. Environ Technol Letters 1:494–505

    Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  CAS  Google Scholar 

  • Tomasevic DD, Dalmacija MB, Prica MD, Dalmacija BD, Kerkez DV, Bečelić-Tomin MR, Roncevic SD (2013) Use of fly ash for remediation of metals polluted sediment-green remediation. Chemospher 92:1490–1497

    Article  CAS  Google Scholar 

  • Tsang DCW, Lo IMC (2006) Competitive Cu and Cd sorption and transport in soils: a combined batch kinetics, column, and sequential extraction study. Environ Sci Technol 40:6655–6661

    Article  CAS  Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using Rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    Article  CAS  Google Scholar 

  • Wallace CJ, Medina SH, ElSayed MEH (2014) Effect of rhamnolipids on permeability across Caco-2 cell monolayers. Pharm Res-Dordr 31:887–894

    Article  CAS  Google Scholar 

  • Wan J, Meng D, Long T, Ying R, Ye M, Zhang S, Li Q, Zhou Y, Lin Y (2015) Simultaneous removal of lindane, lead and cadmium from soils by rhamnolipids combined with citric acid. PLoS One 10:1–14

    Google Scholar 

  • Wu W, Hu Y, Guo Q, Yan J, Chen Y, Cheng J (2015) Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: effects of pH, ionic strength, and DOM. J Hazard Mater 297:59–65

    Article  CAS  Google Scholar 

  • Yong RN, Phadungchewit Y (2011) pH influence on selectivity and retention of heavy metals in some clay soils. Can Geotech J 30:821–833

    Article  Google Scholar 

  • Yu G, Lei H, Bai T, Li Z, Yu Q, Song X (2009) In-situ stabilisation followed by ex-situ composting for treatment and disposal of heavy metals polluted sediments. J Environ Sci-China 21:877–833

    Article  CAS  Google Scholar 

  • Yuan X, Leng L, Huang H, Chen X, Wang H, Xiao Z, Zhai Y, Chen H, Zeng G (2015) Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 120:645–652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shanghai Natural Science Foundation (14ZR1428900), China Postdoctoral Science Foundation (2017M611590) National Natural Science Foundation of China (51078233), Returned Overseas Chinese Scholars, State Education Ministry (SEM2013), and Shanghai Committee of Science and Technology (13230502300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Xu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Qu, Y., Xu, Z. et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid. Environ Sci Pollut Res 24, 16344–16350 (2017). https://doi.org/10.1007/s11356-017-9272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9272-2

Keywords

  • Biosurfactant
  • Heavy metals
  • Rhamnolipid
  • River sediment
  • Washing