Green biotransformations catalysed by enzyme-inorganic hybrid nanoflowers in environmentally friendly ionic solvents

  • Athena A. Papadopoulou
  • Andromachi Tzani
  • Angeliki C. Polydera
  • Petros Katapodis
  • Epaminondas Voutsas
  • Anastasia Detsi
  • Haralambos Stamatis
Protection and Restoration of the Environment


Environmentally friendly ionic solvents such as (a) ionic liquids (ILs) formulated with hydroxyl ammonium cations and various carboxylic acid anions and (b) choline chloride or ethyl ammonium chloride-based deep eutectic solvents (DES) were tested as media for hydrolytic and synthetic reactions catalysed by lipase-inorganic hybrid nanoflowers. The nature of ionic solvents used has a significant effect on the hydrolytic and synthetic activity of the immobilized lipase, as well as on its stability and reusability. In choline chloride-based DES, the activity and especially the operational stability of the biocatalyst are significantly increased compared to those observed in buffer, indicating the potential application of these solvents as green media for various biocatalytic processes of industrial interest.


Green solvents Lipase Hybrid nanoflowers Ionic liquids Deep eutectic solvents 



A.T. gratefully acknowledges financial support from the Research Committee of the National Technical University of Athens (scholarship for postgraduate studies).


  1. Attri P, Venkatesu P, Kumar A (2011) Activity and stability of α-chymotrypsin in biocompatible ionic liquids: enzyme refolding by triethyl ammonium acetate. Phys Chem Chem Phys 13:2788–2796. doi: 10.1039/c0cp01291b CrossRefGoogle Scholar
  2. Cvjetko Bubalo M, Jurinjak Tušek A, Vinković M et al (2015) Cholinium-based deep eutectic solvents and ionic liquids for lipase-catalyzed synthesis of butyl acetate. J Mol Catal B Enzym 122:188–198. doi: 10.1016/j.molcatb.2015.09.005 CrossRefGoogle Scholar
  3. Deive FJ, Ruivo D, Rodrigues JV et al (2015) On the hunt for truly biocompatible ionic liquids for lipase-catalyzed reactions. RSC Adv 5:3386–3389. doi: 10.1039/C4RA15021J CrossRefGoogle Scholar
  4. Domínguez de María P, Maugeri Z (2011) Ionic liquids in biotransformations: from proof-of-concept to emerging deep-eutectic-solvents. Curr Opin Chem Biol 15:220–225. doi: 10.1016/j.cbpa.2010.11.008 CrossRefGoogle Scholar
  5. Durand E, Lecomte J, Baréa B et al (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem 47:2081–2089. doi: 10.1016/j.procbio.2012.07.027 CrossRefGoogle Scholar
  6. Durand E, Lecomte J, Villeneuve P (2013) Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol 115:379–385. doi: 10.1002/ejlt.201200416 CrossRefGoogle Scholar
  7. Ge J, Lei J, Zare RN (2012) Protein–inorganic hybrid nanoflowers. Nat Nanotechnol 7:428–432. doi: 10.1038/nnano.2012.80 CrossRefGoogle Scholar
  8. Gorke J, Srienc F, Kazlauskas R (2010a) Toward advanced ionic liquids. Polar, enzyme-friendly solvents for biocatalysis. Biotechnol Bioprocess Eng 15:40–53. doi: 10.1007/s12257-009-3079-z CrossRefGoogle Scholar
  9. Gorke JT, Srienc F, Kazlauskas RJ (2010b) Deep eutectic solvents for Candida antarctica lipase B-catalyzed reactions. In: Malhotra SV (ed) Ionic liquid applications: pharmaceuticals, therapeutics, and biotechnology. American Chemical Society, Washington, pp 169–180. doi: 10.1021/bk-2010-1038.ch014 CrossRefGoogle Scholar
  10. Guajardo N, Müller CR, Schrebler R et al (2016) Deep eutectic solvents for organocatalysis, biotransformations, and multistep organocatalyst/enzyme combinations. ChemCatChem 8:1020–1027. doi: 10.1002/cctc.201501133 CrossRefGoogle Scholar
  11. Kleiner B, Schörken U (2015) Native lipase dissolved in hydrophilic green solvents: a versatile 2-phase reaction system for high yield ester synthesis. Eur J Lipid Sci Technol 117:167–177. doi: 10.1002/ejlt.201400494 CrossRefGoogle Scholar
  12. Lau RM, Sorgedrager MJ, Carrea G et al (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487. doi: 10.1039/B405693K CrossRefGoogle Scholar
  13. Lee SW, Cheon SA, Kim MI, Park TJ (2015) Organic–inorganic hybrid nanoflowers: types, characteristics, and future prospects. J Nanobiotechnology 13:54–64. doi: 10.1186/s12951-015-0118-0 CrossRefGoogle Scholar
  14. Lin Z, Xiao Y, Wang L et al (2014) Facile synthesis of enzyme-inorganic hybrid nanoflowers and their application as an immobilized trypsin reactor for highly efficient protein digestion. RSC Adv 4:13888–13891. doi: 10.1039/C4RA00268G CrossRefGoogle Scholar
  15. Lindberg D, de la Fuente RM, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147:169–171. doi: 10.1016/j.jbiotec.2010.04.011 CrossRefGoogle Scholar
  16. Lozano P (2010) Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem 12:555–569. doi: 10.1039/b919088k CrossRefGoogle Scholar
  17. Ni Y, Holtmann D, Hollmann F (2014) How green is biocatalysis? To calculate is to know. ChemCatChem 6:930–943. doi: 10.1002/cctc.201300976 CrossRefGoogle Scholar
  18. Papadopoulou AA, Katsoura MH, Chatzikonstantinou A et al (2013) Enzymatic hybridization of α-lipoic acid with bioactive compounds in ionic solvents. Bioresour Technol 136:41–48. doi: 10.1016/j.biortech.2013.02.067 CrossRefGoogle Scholar
  19. Papadopoulou AA, Tzani A, Alivertis D et al (2016a) Hydroxyl ammonium ionic liquids as media for biocatalytic oxidations. Green Chem 18:1147–1158. doi: 10.1039/C5GC02381E CrossRefGoogle Scholar
  20. Papadopoulou AA, Efstathiadou E, Patila M et al (2016b) Deep eutectic solvents as media for peroxidation reactions catalyzed by heme-dependent biocatalysts. Ind Eng Chem Res 55:5145–5151. doi: 10.1021/acs.iecr.5b04867 CrossRefGoogle Scholar
  21. Patila M, Pavlidis IV, Kouloumpis A et al (2016) Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c. Int J Biol Macromol 84:227–235. doi: 10.1016/j.ijbiomac.2015.12.023 CrossRefGoogle Scholar
  22. Pavlidis IV, Patila M, Bornscheuer UT et al (2014) Graphene-based nanobiocatalytic systems: recent advances and future prospects. Trends Biotechnol 32:312–320. doi: 10.1016/j.tibtech.2014.04.004 CrossRefGoogle Scholar
  23. Rantwijk FV, Sheldon RA (2006) Structure and activity of Candida antarctica lipase B in ionic liquids. Green Chem 8:282–286. doi: 10.1039/b513062j CrossRefGoogle Scholar
  24. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307. doi: 10.1002/adsc.200700082 CrossRefGoogle Scholar
  25. Sheldon RA (2016) Biocatalysis and biomass conversion in alternative reaction media. Chem Eur J 22:12984–12999. doi: 10.1002/chem.201601940 CrossRefGoogle Scholar
  26. Singh AK, Mukhopadhyay M (2012) Overview of fungal lipase: a review. Appl Biochem Biotechnol 166:486–520. doi: 10.1007/s12010-011-9444-3 CrossRefGoogle Scholar
  27. Tzani A, Elmaloglou M, Kyriazis C et al (2016) Synthesis and structure-properties relationship studies of biodegradable hydroxylammonium-based protic ionic liquids. J Mol Liq 224:366–376. doi: 10.1016/j.molliq.2016.09.086 CrossRefGoogle Scholar
  28. Tzialla A, Pavlidis IV, Felicissimo MP et al (2010) Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of alpha-pinene. Bioresour Technol 101:1587–1594. doi: 10.1016/j.biortech.2009.10.023 CrossRefGoogle Scholar
  29. Ventura SPM, Santos LDF, Saraiva JA, Coutinho JAP (2012) Ionic liquids microemulsions: the key to Candida antarctica lipase B superactivity. Green Chem 14:1620–1625. doi: 10.1039/c2gc35197h CrossRefGoogle Scholar
  30. Weingärtner H, Cabrele C, Herrmann C (2012) How ionic liquids can help to stabilize native proteins. Phys Chem Chem Phys 14:415–426. doi: 10.1039/c1cp21947b CrossRefGoogle Scholar
  31. Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13:3007–3047. doi: 10.1039/c1gc15579b CrossRefGoogle Scholar
  32. Wu BP, Wen Q, Xu H, Yang Z (2014a) Insights into the impact of deep eutectic solvents on horseradish peroxidase: activity, stability and structure. J Mol Catal B Enzym 101:101–107. doi: 10.1016/j.molcatb.2014.01.001 CrossRefGoogle Scholar
  33. Wu Z, Li X, Li F et al (2014b) Enantioselective transesterification of (R,S)-2-pentanol catalyzed by a new flower-like nanobioreactor. RSC Adv 4:33998–34002. doi: 10.1039/C4RA04431B CrossRefGoogle Scholar
  34. Yin Y, Xiao Y, Lin G et al (2015) An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. J Mater Chem B 3:2295–2300. doi: 10.1039/C4TB01697A CrossRefGoogle Scholar
  35. Zhang Q, De Oliveira VK, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146. doi: 10.1039/c2cs35178a CrossRefGoogle Scholar
  36. Zhao H, Zhang C, Crittle TD (2013) Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym 85–86:243–247. doi: 10.1016/j.molcatb.2012.09.003 CrossRefGoogle Scholar
  37. Zhu L, Gong L, Zhang Y et al (2013) Rapid detection of phenol using a membrane containing laccase nanoflowers. Chem Asian J 8:2358–2360. doi: 10.1002/asia.201300020 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Athena A. Papadopoulou
    • 1
  • Andromachi Tzani
    • 2
  • Angeliki C. Polydera
    • 1
  • Petros Katapodis
    • 1
  • Epaminondas Voutsas
    • 2
  • Anastasia Detsi
    • 2
  • Haralambos Stamatis
    • 1
  1. 1.Department of Biological Applications & Technologies, Laboratory of BiotechnologyUniversity of IoanninaIoanninaGreece
  2. 2.Laboratory of Organic Chemistry, School of Chemical EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations