Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 17, pp 16402–16410 | Cite as

Absolute configuration of 2,2′,3,3′,6-pentachlorinatedbiphenyl (PCB 84) atropisomers

  • Xueshu Li
  • Sean R. Parkin
  • Hans-Joachim Lehmler
PCBs Risk Evaluation and Environmental Protection

Abstract

Nineteen polychlorinated biphenyl (PCB) congeners, such as 2,2′,3,3′,6-pentachlorobiphenyl (PCB 84), display axial chirality because they form stable rotational isomers, or atropisomers, that are non-superimposable mirror images of each other. Although chiral PCBs undergo atropselective biotransformation and atropselectively alter biological processes, the absolute structure of only a few PCB atropisomers has been determined experimentally. To help close this knowledge gap, pure PCB 84 atropisomers were obtained by semi-preparative liquid chromatography with two serially connected Nucleodex β-PM columns. The absolute configuration of both atropisomers was determined by X-ray single-crystal diffraction. The PCB 84 atropisomer eluting first and second on the Nucleodex β-PM column correspond to (aR)-(−)-PCB 84 and (aS)-(+)-PCB 84, respectively. Enantioselective gas chromatographic analysis with the β-cyclodextrin-based CP-Chirasil-Dex CB gas chromatography column showed the same elution order as the Nucleodex β-PM column. Based on earlier reports, the atropisomers eluting first and second on the BGB-172 gas chromatography column are (aR)-(−)-PCB 84 and (aS)-(+)-PCB 84, respectively. An inversion of the elution order is observed on the Cyclosil-B gas chromatography and Cellulose-3 liquid chromatography columns. These results advance the interpretation of environmental and human biomonitoring as well as toxicological studies.

Keywords

Absolute configuration Chirality Enantiomer Environmental contaminant Polychlorinated biphenyl Rotational isomer 

Notes

Acknowledgements

This work was supported by grants ES05605, ES013661, and ES017425 from the National Institute of Environmental Health Sciences/National Institutes of Health. The X8 Proteum diffractometer was funded by the National Science Foundation (MRI CHE0319176) and by the University of Kentucky (cost share). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences/National Institutes of Health or the National Science Foundation.

Supplementary material

11356_2017_9259_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)

References

  1. Bordajandi LR, Abad E, Gonzalez MJ (2008) Occurrence of PCBs, PCDD/Fs, PBDEs and DDTs in Spanish breast milk: enantiomeric fraction of chiral PCBs. Chemosphere 70:567–575CrossRefGoogle Scholar
  2. Bruker-AXS (2006) APEX2. Bruker-AXS Inc., MadisonGoogle Scholar
  3. Chai T, Cui F, Mu X, Yang Y, Wang C, Qiu J (2016a) Exploration of stereoselectivity in embryo-larvae (Danio rerio) induced by chiral PCB149 at the bioconcentration and gene expression levels. PLoS One 11Google Scholar
  4. Chai T, Cui F, Yin Z, Yang Y, Qiu J, Wang C (2016b) Chiral PCB 91 and 149 toxicity testing in embryo and larvae (Danio rerio): application of targeted metabolomics via UPLC-MS/MS. Sci Rep. doi: 10.1038/srep33481 Uk 6
  5. Gomara B, Gonzalez MJ (2006) Enantiomeric fractions and congener specific determination of polychlorinated biphenyls in eggs of predatory birds from Donana National Park (Spain). Chemosphere 63:662–669CrossRefGoogle Scholar
  6. Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW (2015) Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 45:245–272CrossRefGoogle Scholar
  7. Haglund P (1996a) Enantioselective separation of polychlorinated biphenyl atropisomers using chiral high-performance liquid chromatography. J Chromatogr A 724:219–228CrossRefGoogle Scholar
  8. Haglund P (1996b) Isolation and characterisation of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 32:2133–2140CrossRefGoogle Scholar
  9. Harju MT, Haglund P (1999) Determination of the rotational energy barriers of atropisomeric polychlorinated biphenyls. Fresen J Anal Chem 364:219–223CrossRefGoogle Scholar
  10. Jimenez O, Jimenez B, Marsili L, Gonzalez MJ (1999) Enantiomeric ratios of chiral polychlorinated biphenyls in stranded cetaceans from the Mediterranean Sea. Organohalgen Compd 40:409–412Google Scholar
  11. Joshi SN, Vyas SM, Duffel MW, Parkin S, Lehmler HJ (2011) Synthesis of sterically hindered polychlorinated biphenyl derivatives. Synthesis 7:1045–1054Google Scholar
  12. Kania-Korwel I, Garrison AW, Avants JK, Hornbuckle KC, Robertson LW, Sulkowski WW, Lehmler HJ (2006) Distribution of chiral PCBs in selected tissues in the laboratory rat. Environ Sci Technol 40:3704–3710CrossRefGoogle Scholar
  13. Kania-Korwel I, Lehmler HJ (2013) Assigning atropisomer elution orders using atropisomerically enriched polychlorinated biphenyl fractions generated by microsomal metabolism. J Chromatogr A 1278:133–144CrossRefGoogle Scholar
  14. Kania-Korwel I, Lehmler HJ (2016a) Chiral polychlorinated biphenyls: absorption, metabolism and excretion—a review. Environ Sci Pollut Res 23:2042–2057CrossRefGoogle Scholar
  15. Kania-Korwel I, Lehmler HJ (2016b) Toxicokinetics of chiral polychlorinated biphenyls across different species-a review. Environ Sci Pollut Res 23:2058–2080CrossRefGoogle Scholar
  16. Konwick BJ, Garrison AW, Black MC, Avants JK, Fisk AT (2006) Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout. Environ Sci Technol 40:2930–2936CrossRefGoogle Scholar
  17. Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Cryst 48(1):3–10CrossRefGoogle Scholar
  18. Lehmler HJ, Price DJ, Garrison AW, Birge WJ, Robertson LW (2003) Distribution of PCB 84 enantiomers in C57BL/6 mice. Fresenius Environ Bull 12:254–260Google Scholar
  19. Lehmler HJ, Robertson LW, Garrison AW, Kodavanti PRS (2005a) Effects of PCB 84 enantiomers on [3H]-phorbol ester binding in rat cerebellar granule cells and 45Ca2+-uptake in rat cerebellum. Toxicol Lett 156:391–400CrossRefGoogle Scholar
  20. Lehmler HJ, Robertson LW, Parkin S (2005b) 2,2′,3,3′,6-Pentachlorobiphenyl (PCB 84). Acta Crystallogr Sect E: Struct Rep Online 61:O3025–O3026CrossRefGoogle Scholar
  21. Lehmler HJ, Harrad SJ, Huhnerfuss H, Kania-Korwel I, Lee CM, Lu Z, Wong CS (2010) Chiral polychlorinated biphenyl transport, metabolism, and distribution: a review. Environ Sci Technol 44:2757–2766CrossRefGoogle Scholar
  22. Li X, Parkin S, Lehmler HJ (2014) 2,4-Di-chloro-1-iodo-6-nitro-benzene. Acta Crystallogr E70:o607Google Scholar
  23. Mannschreck A, Pustet N, Robertson LW, Oesch F, Puttmann M (1985) Enantiomers of polychlorinated-biphenyls semipreparative enrichment by liquid-chromatography. Liebigs Ann Chem:2101–2103Google Scholar
  24. Parkin S, Moezzi B, Hope H (1995) XABS2: an empirical absorption correction program. J Appl Cryst 28(1):53–56CrossRefGoogle Scholar
  25. Parsons S, Flack HD, Wagner T (2013) Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B 69:249–259CrossRefGoogle Scholar
  26. Pessah IN, Lehmler HJ, Robertson LW, Perez CF, Cabrales E, Bose DD, Feng W (2009) Enantiomeric specificity of (−)-2,2′,3,3′,6,6′-hexachlorobiphenyl toward ryanodine receptor types 1 and 2. Chem Res Toxicol 22:201–207CrossRefGoogle Scholar
  27. Pham-Tuan H, Larsson C, Hoffmann F, Bergman A, Froba M, Huhnerfuss H (2005) Enantioselective semipreparative HPLC separation of PCB metabolites and their absolute structure elucidation using electronic and vibrational circular dichroism. Chirality 17:266–280CrossRefGoogle Scholar
  28. Püttmann M, Oesch F, Robertson LW (1986) Characteristics of polychlorinated biphenyl (PCB) atropisomers. Chemosphere 15:2061–2064CrossRefGoogle Scholar
  29. Püttmann M, Mannschreck A, Oesch F, Robertson L (1989) Chiral effects in the induction of drug-metabolizing-enzymes using synthetic atropisomers of polychlorinated-biphenyls (PCBs). Biochem Pharmacol 38:1345–1352CrossRefGoogle Scholar
  30. Püttmann M, Arand M, Oesch F, Mannschreck A, Robertson LW (1990) Chirality and the induction of xenobiotic-metabolizing enzymes: effects of the atropisomers of the polychlorinated biphenyl 2,2′,3,4,4′,6-hexachlorobiphenyl. In: Frank HHB, Testa B (eds) Chirality and Biological Activity. Alan R. Liss, Inc., New York, pp 177–184Google Scholar
  31. Reich S, Schurig V (1999) Enantiomerentrennung atropisomerer PCB mittels HPLC. GIT Spezial 1:15–16Google Scholar
  32. Rodman LE, Shedlofsky SI, Mannschreck A, Puttmann M, Swim AT, Robertson LW (1991) Differential potency of atropisomers of polychlorinated-biphenyls on cytochrome-P450 induction and uroporphyrin accumulation in the chick-embryo hepatocyte culture. Biochem Pharmacol 41:915–922CrossRefGoogle Scholar
  33. Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122CrossRefGoogle Scholar
  34. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8CrossRefGoogle Scholar
  35. Toda M, Matsumura C, Tsurukawa M, Okuno T, Nakano T, Inoue Y, Mori T (2012) Absolute configuration of atropisomeric polychlorinated biphenyl 183 enantiomerically enriched in human samples. J Phys Chem A 116:9340–9346CrossRefGoogle Scholar
  36. Warner NA, Martin JW, Wong CS (2009) Chiral polychlorinated biphenyls are biotransformed enantioselectively by mammalian cytochrome p-450 isozymes to form hydroxylated metabolites. Environ Sci Technol 43:114–121CrossRefGoogle Scholar
  37. Xu N, Mu P, Jia Q, Chai T, Yin Z, Yang S, Qiu J (2015) Comparison of enantioseparations of 19 chiral polychlorinated biphenyls by 5 different polysaccharides chiral columns. Chin J Anal Chem 43:795–801Google Scholar
  38. Xu N, Mu P, Yin Z, Jia Q, Yang S, Qian Y, Qiu J (2016) Analysis of the enantioselective effects of PCB 95 in zebrafish (Danio rerio) embryos through targeted metabolomics by UPLC-MS/MS. Plos One 11:e0160584CrossRefGoogle Scholar
  39. Yang DR, Kania-Korwel I, Ghogha A, Chen H, Stamou M, Bose DD, Pessah IN, Lehmler HJ, Lein PJ (2014) PCB 136 atropselectively alters morphometric and functional parameters of neuronal connectivity in cultured rat hippocampal neurons via ryanodine receptor-dependent mechanisms. Toxicol Sci 138:379–392CrossRefGoogle Scholar
  40. Yin W, Wu C, Fnag L, Zhang A (2012) Enantiomer separation of polychlorinated biphenyls on chiral chromatographic columns of cellulose and amylose by high-performance liquid chromatography. J Zhengjiang Univ Technol 40:35–38Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Occupational and Environmental Health, College of Public HealthThe University of IowaIowa CityUSA
  2. 2.Department of ChemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations