Skip to main content
Log in

Cancer risk from gaseous carbonyl compounds in indoor environment generated from household coal combustion in Xuanwei, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Airborne carbonyls were characterized from emitted indoor coal combustion. Samples were collected in Xuanwei (Yunnan Province), a region in China with a high rate of lung cancer. Eleven of 19 types of samples (58%) demonstrated formaldehyde concentrations higher than the World Health Organization exposure limit (a 30-min average of 100 μg m−3). Different positive significant correlations between glyoxal/methylglyoxal and formaldehyde/acetaldehyde concentrations were observed, suggesting possible different characteristics in emissions between two pairs of carbonyl compounds. A sample in the highest inhalation risk shows 29.2 times higher risk than the lowest sample, suggesting different coal sampling locations could contribute to the variation of inhalation risk. Inhabitants in Xuanwei also tend to spend more time cooking and more days per year indoors than the national average. The calculated cancer risk ranged from 2.2–63 × 10−5, which shows 13 types of samples at high-risk level. Cumulative effect in combination with different carbonyls could have contributed to the additive actual inhalation cancer risk. There is a need to explicitly address the health effects of environmentally relevant doses, considering life-long exposure in indoor dwellings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdullahi KL, Delgado-Saborit JM, Harrison RM (2013) Emissions and indoor concentrations of particulate matter and its specific chemical components from cooking: a review. Atmos Environ 71:260–294

    Article  CAS  Google Scholar 

  • Atkinson R (2000) Atmospheric chemistry of VOCs and NOx. Atmos Environ 34:2063–2101

    Article  CAS  Google Scholar 

  • ATSDR (1999) Formaldehyde: toxic substances portal. Available from: http://www.atsdr.cdc.gov/ToxProfiles/tp111.pdf

  • Báez A, Padilla H, García RO, del Carmen Torres M, Rosas I, Belmont R (2003) Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico. Sci Total Environ 302:211–226

    Article  Google Scholar 

  • Barone-Adesi F, Chapman RS, Silverman DT, He X, Hu W, Vermeulen R, Ning B, Fraumeni JF, Rothman N, Lan Q (2012) Risk of lung cancer associated with domestic use of coal in Xuanwei, China: retrospective cohort study. BMJ 345:e5414

    Article  Google Scholar 

  • Carlier P, Hannachi H, Mouvier G (1986) The chemistry of carbonyl compounds in the atmosphere—a review. Atmos Environ (1967) 20:2079–2099

    Article  CAS  Google Scholar 

  • Carter WP (1994) Development of ozone reactivity scales for volatile organic compounds. Air Waste 44:881–899

    Article  CAS  Google Scholar 

  • CEPA (1993) Acetaldehyde as a toxic air contaminant. Part A: exposure; part B: health assessment. Stationary Source Division, Sacramento

    Google Scholar 

  • Chen S-C, Liao C-M (2006) Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci Total Environ 366:112–123

    Article  CAS  Google Scholar 

  • Cheng J-H, Lee Y-S, Chen K-S (2015) Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan. J Environ Sci 41:218–226

    Article  Google Scholar 

  • Chuang JC, Wise SA, Cao S, Mumford JL (1992) Chemical characterization of mutagenic fractions of particles from indoor coal combustion: a study of lung cancer in Xuan Wei, China. Environ Sci Technol 26:999–1004

    Article  CAS  Google Scholar 

  • Clarisse B, Laurent A, Seta N, Le Moullec Y, El Hasnaoui A, Momas I (2003) Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings. Environ Res 92:245–253

    Article  CAS  Google Scholar 

  • Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM (2013) Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environ Health Perspect 121:1120–1128

    Google Scholar 

  • Dai S, Tian L, Chou C-L, Zhou Y, Zhang M, Zhao L, Wang J, Yang Z, Cao H, Ren D (2008) Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: occurrence and origin of quartz and chamosite. Int J Coal Geol 76:318–327

    Article  CAS  Google Scholar 

  • De Smedt I, Müller J-F, Stavrakou T, van der A R, Eskes H, Van Roozendael M (2008) Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors. Atmos Chem Phys 8:4947–4963

    Article  CAS  Google Scholar 

  • Dingle P, Franklin P (2002) Formaldehyde levels and the factors affecting these levels in homes in Perth, Western Australia. Indoor Built Environ 11:111–116

    Article  CAS  Google Scholar 

  • Duan X (2015) Highlights of the Chinese exposure factors handbook. Academic Press

  • Feng Y-l, Xiong B, C-c M, Y-j C (2010) Emissions of volatile organic compounds and carbonyl compounds from residential coal combustion in China. J Shanghai University (English Edition) 14:79–82

    Article  CAS  Google Scholar 

  • Grimaldi F, Botti P, Bouthiba M, Gouezo F, Viala A (1996) Study of indoor air pollution by carbonyl compounds. Pollut Atmos:57–67

  • Grosjean D, Grosjean E, Moreira LF (2002) Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environ Sci Technol 36:1389–1395

    Article  CAS  Google Scholar 

  • He C, Ge Y, Tan J, You K, Han X, Wang J, You Q, Shah AN (2009) Comparison of carbonyl compounds emissions from diesel engine fueled with biodiesel and diesel. Atmos Environ 43:3657–3661

    Article  CAS  Google Scholar 

  • Hedberg E, Kristensson A, Ohlsson M, Johansson C, Johansson P-Å, Swietlicki E, Vesely V, Wideqvist U, Westerholm R (2002) Chemical and physical characterization of emissions from birch wood combustion in a wood stove. Atmos Environ 36:4823–4837

    Article  CAS  Google Scholar 

  • Héroux M-E, Clark N, Ryswyk KV, Mallick R, Gilbert NL, Harrison I, Rispler K, Wang D, Anastassopoulos A, Guay M (2010) Predictors of indoor air concentrations in smoking and non-smoking residences. Int J Environ Res Public Health 7:3080–3099

    Article  Google Scholar 

  • Ho K, Ho SSH, Cheng Y, Lee S, Yu JZ (2007) Real-world emission factors of fifteen carbonyl compounds measured in a Hong Kong tunnel. Atmos Environ 41:1747–1758

    Article  CAS  Google Scholar 

  • Ho SSH, Ho KF, Liu WD, Lee SC, Dai WT, Cao JJ, Ip HSS (2011) Unsuitability of using the DNPH-coated solid sorbent cartridge for determination of airborne unsaturated carbonyls. Atmos Environ 45:261–265

    Article  CAS  Google Scholar 

  • Hoddinott K, Lee A (2000) The use of environmental risk assessment methodologies for an indoor air quality investigation. Chemosphere 41:77–84

    Article  CAS  Google Scholar 

  • Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, Wu J (2012) Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2. 5 in Nanjing, China. Atmos Environ 57:146–152

    Article  CAS  Google Scholar 

  • Huang Y, Ho SSH, Ho KF, Lee SC, Yu JZ, Louie PK (2011) Characteristics and health impacts of VOCs and carbonyls associated with residential cooking activities in Hong Kong. J Hazard Mater 186:344–351

    Article  CAS  Google Scholar 

  • IARC (2004) IARC monographs on the evaluation of carcinogenic risks to humans. IARC

  • IARC (2006) IARC monographs on the evaluation of carcinogenic risks to humans-formaldehydes, 2-butoxyethanol and 1-tert-Butoxypropan-2-ol. IARC

  • IARC (2010) Household use of solid fuels and high-temperature frying. In: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 95 (Lyon, France)

  • Jiang R, Bell ML (2008) A comparison of particulate matter from biomass-burning rural and non-biomass-burning urban households in northeastern China. Environ Health Perspect 116:907–914

    Article  Google Scholar 

  • Kabir E, Kim K-H, Ahn J-W, Hong O-F, Sohn JR (2010) Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls. J Hazard Mater 174:492–499

    Article  CAS  Google Scholar 

  • Kean AJ, Grosjean E, Grosjean D, Harley RA (2001) On-road measurement of carbonyls in California light-duty vehicle emissions. Environ Sci Technol 35:4198–4204

    Article  CAS  Google Scholar 

  • Kim C, Chapman RS, Hu W, He X, Hosgood HD, Liu LZ, Lai H, Chen W, Silverman DT, Vermeulen R (2014) Smoky coal, tobacco smoking, and lung cancer risk in Xuanwei, China. Lung Cancer 84:31–35

    Article  Google Scholar 

  • Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, Behar JV, Hern SC, Engelmann WH (2001) The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 11:231–252

    Article  CAS  Google Scholar 

  • Lee M, Heikes BG, Jacob DJ, Sachse G, Anderson B (1997) Hydrogen peroxide, organic hydroperoxide, and formaldehyde as primary pollutants from biomass burning. J Geophys Res Atmos (1984–2012) 102:1301–1309

    Article  CAS  Google Scholar 

  • Lin B, Ouyang X (2014) Energy demand in China: comparison of characteristics between the US and China in rapid urbanization stage. Energy Convers Manag 79:128–139

    Article  Google Scholar 

  • Lin H, Ning B, Li J, Ho SC, Huss A, Vermeulen R, Tian L (2015) Lung cancer mortality among women in Xuan Wei, China: a comparison of spatial clustering detection methods. Asia Pac J Public Health 27:NP392–NP401

    Article  Google Scholar 

  • Liu G, Niu Z, Van Niekerk D, Xue J, Zheng L (2008) Polycyclic aromatic hydrocarbons (PAHs) from coal combustion: emissions, analysis, and toxicology, Reviews of environmental contamination and toxicology. Springer, pp. 1–28

  • Lui K, Bandowe BAM, Tian L, Chan C-S, Cao J-J, Ning Z, Lee S, Ho K (2017) Cancer risk from polycyclic aromatic compounds in fine particulate matter generated from household coal combustion in Xuanwei, China. Chemosphere 169:660–668

    Article  CAS  Google Scholar 

  • Marchand C, Bulliot B, Le Calvé S, Mirabel P (2006) Aldehyde measurements in indoor environments in Strasbourg (France). Atmos Environ 40:1336–1345

    Article  CAS  Google Scholar 

  • McLaughlin JK (1994) Formaldehyde and cancer: a critical review. Int Arch Occup Environ Health 66:295–301

    Article  CAS  Google Scholar 

  • Meyer W, Seiler T-B, Schwarzbauer J, Püttmann W, Hollert H, Achten C (2014) Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank. Sci Total Environ 494:320–328

    Article  Google Scholar 

  • Moon C, Sung Y, Ahn S, Kim T, Choi G, Kim D (2013) Thermochemical and combustion behaviors of coals of different ranks and their blends for pulverized-coal combustion. Appl Therm Eng 54:111–119

    Article  CAS  Google Scholar 

  • Mumford J, He X, Chapman R, Harris D, Li X, Xian Y, Jiang W, Xu C, Chuang J (1987) Lung cancer and indoor air pollution in Xuan Wei, China. Science 235:217–220

    Article  CAS  Google Scholar 

  • Mumford J, Chapman R, Harris D, He X, Cao S, Xian Y, Li X (1989) Indoor air exposure to coal and wood combustion emissions associated with a high lung cancer rate in Xuan Wei, China. Environ Int 15:315–320

    Article  CAS  Google Scholar 

  • Mumford JL, Helmes CT, Lee X, Seidenberg J, Nesnow S (1990) Mouse skin tumorigenicity studies of indoor coal and wood combustion emissions from homes of residents in Xuan Wei, China with high lung cancer mortality. Carcinogenesis 11:397–403

    Article  CAS  Google Scholar 

  • Mumford JL, Lee X, Lewtas J, Young TL, Santella RM (1993) DNA adducts as biomarkers for assessing exposure to polycyclic aromatic hydrocarbons in tissues from Xuan Wei women with high exposure to coal combustion emissions and high lung cancer mortality. Environ Health Perspect 99:83–87

    Article  CAS  Google Scholar 

  • Mumford JL, Li X, Hu F, Lu XB, Chuang JC (1995) Human exposure and dosimetry of polycyclic aromatic hydrocarbons in urine from Xuan Wei, China with high lung cancer mortality associated with exposure to unvented coal smoke. Carcinogenesis 16:3031–3036

    Article  CAS  Google Scholar 

  • NCR (1981) Formaldehyde and other aldehydes, Washington, D.C., U.S.A

  • Pal R, Kim K-H, Hong Y-J, Jeon E-C (2008) The pollution status of atmospheric carbonyls in a highly industrialized area. J Hazard Mater 153:1122–1135

    Article  CAS  Google Scholar 

  • Parthasarathy S, Maddalena RL, Russell ML, Apte MG (2011) Effect of temperature and humidity on formaldehyde emissions in temporary housing units. J Air Waste Manag Assoc 61:689–695

    Article  CAS  Google Scholar 

  • Perry R, Gee IL (1995) Vehicle emissions in relation to fuel composition. Sci Total Environ 169:149–156

    Article  CAS  Google Scholar 

  • Püttmann W, Schaefer R (1990) Assessment of carbonization of coals by analysis of trapped hydrocarbons. Energy Fuel 4:523–528

    Google Scholar 

  • Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981

    Article  CAS  Google Scholar 

  • Sarigiannis DA, Karakitsios SP, Gotti A, Liakos IL, Katsoyiannis A (2011) Exposure to major volatile organic compounds and carbonyls in European indoor environments and associated health risk. Environ Int 37:743–765

    Article  CAS  Google Scholar 

  • Schulte-Ladbeck R, Lindahl R, Levin JO, Karst U (2001) Characterization of chemical interferences in the determination of unsaturated aldehydes using aromatic hydrazine reagents and liquid chromatography. J Environ Monit 3:306–310

    Article  CAS  Google Scholar 

  • Seco R, Penuelas J, Filella I (2007) Short-chain oxygenated VOCs: emission and uptake by plants and atmospheric sources, sinks, and concentrations. Atmos Environ 41:2477–2499

    Article  CAS  Google Scholar 

  • Spaulding RS, Frazey P, Rao X, Charles MJ (1999) Measurement of hydroxy carbonyls and other carbonyls in ambient air using pentafluorobenzyl alcohol as a chemical ionization reagent. Anal Chem 71:3420–3427

    Article  CAS  Google Scholar 

  • Tao M, Chen L, Wang Z, Wang J, Tao J, Wang X (2016) Did the widespread haze pollution over China increase during the last decade? A satellite view from space. Environ Res Lett 11:054019

    Article  Google Scholar 

  • Tian L, Lucas D, Fischer SL, Lee S, Hammond SK, Koshland CP (2008) Particle and gas emissions from a simulated coal-burning household fire pit. Environ Sci Technol 42:2503–2508

    Article  CAS  Google Scholar 

  • Tie X, Cao J (2009) Aerosol pollution in China: present and future impact on environment. Particuology 7:426–431

    Article  CAS  Google Scholar 

  • U.S.EPA (2011) Risk assessment guidance for superfund. Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment vol. I. Available at: http://www.epa.gov/oswer/riskassessment/human_health_ exposure.htm. (Date accessed: 6 June 2016)

  • U.S.EPA (2015) Integrated Risk Information System (IRIS). Available at: http://www.epa.gov/iris/ (Date accessed: 6 June 2016)

  • Vaizoğlu SA, Aycan S, Deveci MA, Bulut B, Bayraktar UD, Akyollu B, Arslan U, Akpinar F, Baris Z, Arslan S (2003) Determining domestic formaldehyde levels in Ankara, Turkey. Indoor Built Environ 12:329–336

    Article  Google Scholar 

  • Wert B, Trainer M, Fried A, Ryerson T, Henry B, Potter W, Angevine W, Atlas E, Donnelly S, Fehsenfeld F (2003) Signatures of terminal alkene oxidation in airborne formaldehyde measurements during TexAQS 2000. J Geophys Res Atmos (1984–2012) 108:4104–4118

    Google Scholar 

  • WHO (2000) Air quality guidelines for Europe, 2nd edition, 2000. World Health Organization, Denmark

    Google Scholar 

  • WHO (2010) WHO guidelines for indoor air quality: selected pollutants. World Health Organization, Europe

    Google Scholar 

  • World energy outlook (2012) International Energy Agency, Vienna

  • Yokelson RJ, Goode JG, Ward DE, Susott RA, Babbitt RE, Wade DD, Bertschi I, Griffith DW, Hao WM (1999) Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy. J Geophys Res Atmos (1984–2012) 104:30109–30125

    Article  CAS  Google Scholar 

  • Zhang D (1999) Investigation on the health of workers occupationally exposed to low level of formaldehydes. Chin J Ind Hyg Occup Dis 17:13–14

    Google Scholar 

  • Zhang J, Smith KR (1999) Emissions of carbonyl compounds from various cookstoves in China. Environ Sci Technol 33:2311–2320

    Article  CAS  Google Scholar 

  • Zhang J, Lioy PJ, He Q (1994) Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ Sci Technol 28:146–152

    Article  CAS  Google Scholar 

  • Zhang Y, Schauer JJ, Zhang Y, Zeng L, Wei Y, Liu Y, Shao M (2008) Characteristics of particulate carbon emissions from real-world Chinese coal combustion. Environ Sci Technol 42:5068–5073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the project under the Research Grants Council of the Hong Kong Special Administrative Region China (Project No. CUHK 412612). The author would like to thank Xiao-Cui Chen for her assistance in laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bei Wang or Kin-Fai Ho.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• Over 50% of samples produce higher formaldehyde concentrations than the exposure limit

• Positive significant correlations show different emission characteristics

• A sample with the highest inhalation risk is 29.2 times higher than the lowest sample

• Over 60% of samples indicate cooking risks at a high level

Electronic supplementary material

.

ESM 1

(DOCX 3277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lui, KH., Dai, WT., Chan, CS. et al. Cancer risk from gaseous carbonyl compounds in indoor environment generated from household coal combustion in Xuanwei, China. Environ Sci Pollut Res 24, 17500–17510 (2017). https://doi.org/10.1007/s11356-017-9223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9223-y

Keywords

Navigation