Nitrate removal from drinking water with a focus on biological methods: a review

Abstract

This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

USEPA:

United States Environmental Protection Agency

MCL:

Maximum contaminant levels

WHO:

World Health Organization

EEC:

European Economic Community

RO:

Reverse osmosis

IX:

Ion exchange

ED:

Electro dialysis

CD:

Chemical denitrification

BD:

Biological denitrification

SBA:

Strong base anion

DO:

Dissolved oxygen

ATP:

Adenosine triphosphate

HRT:

Hydraulic retention time

COD:

Chemical oxygen demand

BOD:

Biological oxygen demand

C/N:

Carbon-to-nitrate

DOC:

Dissolved organic carbon

DBP:

Disinfection byproduct

BER:

Bio-electrochemical reactor

O&M:

Operations and maintenance

References

  1. Abu Hasan H, Sheikh Abdullah R, Kamarudin K, Tan Kofli N, Anuar N (2014) Kinetic evaluation of simultaneous COD, ammonia and manganese removal from drinking water using a biological aerated filter system. Sep Purif Technol 130:56–64. doi:10.1016/j.seppur.2014.04.016

    CAS  Article  Google Scholar 

  2. Ashok V, Hait S (2015) Remediation of nitrate-contaminated water by solid-phase denitrification process-a review. Environ Sci Pollut Res 22:8075–8093. doi:10.1007/s11356-015-4334-9

    CAS  Article  Google Scholar 

  3. Aslan S, Turkman A (2003) Biological denitrification of drinking water using various natural organic solid substrates. Water Sci Technol 48:489–495. doi:10.1007/s11426-008-0111-7

    CAS  Article  Google Scholar 

  4. Aslan S, Turkman A (2006) Nitrate and pesticides removal from contaminated water using biodenitrification reactor. Process Biochem 41:882–886. doi:10.1016/j.procbio.2005.11.004

    CAS  Article  Google Scholar 

  5. Banasiak L, Schafer A (2009) Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J Membrane Sci 334:101–109. doi:10.1016/j.memsci.2009.02.020

    CAS  Article  Google Scholar 

  6. Bastviken SK, Eriksson PG, Premrove A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190. doi:10.1016/j.ecoleng.2005.04.013

    Article  Google Scholar 

  7. Bellona C, Drewes JE, Oelker G, Luna J, Filteau G, Amy G (2008) Comparing nanofiltration and reverse osmosis for drinking water augmentation. J Am Water Works Ass 100:102–116

    CAS  Article  Google Scholar 

  8. Bergey DH, Buchanan RE, Gibbons NE (1974) Bergey’s manual of determinative bacteriology. 8th ed. Williams & Wilkins Company, Baltimore, MD, p 456–461

  9. Bohdziewicz J, Bodzek M, Wasik E (1999) The application of reverse osmosis and nanofiltration to the removal of nitrates from groundwater. Desalination 121:139–147. doi:10.1016/S0011-9164(99)00015-6

    CAS  Article  Google Scholar 

  10. Boley A, Mergaert J, Muller C, Lebrenz H, Cnockaert MC, Müller WR, Swings J (2003) Denitrification and pesticide elimination in drinking water treatment with the biodegradable polymer poly(ε-caprolactone) (PCL). Acta Hydrochim Hydrobiol 31:195–203

    CAS  Article  Google Scholar 

  11. Boley A, Unger B, Müller WR, Kuch B, Deger A (2006) Biological drinking water treatment for nitrate and pesticide (endosulfan) elimination. Water Sci Technol 6:123–127. doi:10.2166/ws.2006.786

    CAS  Article  Google Scholar 

  12. Brenner A, Argaman Y (1992) Effect of feed composition, aerobic volume fraction and recycle rate on nitrogen removal in the single-sludge system. Water Res 24:1041–1049. doi:10.1016/0043-1354(90)90127-R

    Article  Google Scholar 

  13. Brettar I, Labrenz M, Flavier S, Botel J, Kuosa H, Christen R (2006) Identification of a Thiomicrospira denitrificans like Epsilonproteobacterium as a catalyst for autotrophic denitrification in the central Baltic sea. Appl Environ Microbiol 72:1364–1372. doi:10.1128/AEM.72.2.1364-1372.2006

    CAS  Article  Google Scholar 

  14. Brezonik PL (1977) Denitrification in natural waters. Progress in Water Technology 8:373–392

  15. Burghate SP, Ingole NW (2014) Biological denitrification - a Review. J Environ Sci Comput Sci Eng Technol 14:009–028

    Google Scholar 

  16. Cevaal JN, Suratt WB, Burke JE (1995) Nitrate removal and water quality improvements with reverse osmosis for Brighton, Colorado. Desalination 103:101–111. doi:10.1016/0011-9164(95)00091-7

    CAS  Article  Google Scholar 

  17. Chang CC, Tseng SK, Huang HK (1999) Hydrogenotrophic denitrification with immobilized Alcaligenes eutrophus for drinking water treatment. Bioresour Technol 69:53–58. doi:10.1016/S0960-8524(98)00168-0

    CAS  Article  Google Scholar 

  18. Chaplin BP, Reinhard M, Schneider WF, Schüth C, Shapley JR, Strathmann TJ, Werth CJ (2012) Critical review of Pd-based catalytic treatment of priority contaminants in water. Environ Sci Technol 46:3655–3670. doi:10.1021/es204087q

    CAS  Article  Google Scholar 

  19. Chen D, Yang K, Wang H (2014a) Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor. Desalin Water Treat 57. doi: 10.1080/19443994.2014.986533

  20. Chen D, Yang K, Wang H, Lv B (2014b) Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor. Water Sci Technol 69:2417–2422. doi:10.2166/wst.2014.167

    CAS  Article  Google Scholar 

  21. Chen D, Dai T, Wang H, Yang K (2015) Nitrate removal by a combined bioelectrochemical and sulfur autotrophic denitrification (CBSAD) system at low temperatures. Desalin Water Treat 57:1–7. doi:10.1080/19443994.2015.1101024

    CAS  Article  Google Scholar 

  22. Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695. doi:10.1016/S0045-6535(97)00275-0

    CAS  Article  Google Scholar 

  23. Chintala R, Mollinedo J, Schumacher TE, Malo DD, Papiernik S, Clay DE, Kumar S, Gulbrandson DW (2013) Nitrate sorption and desorption by biochars produced from microwave pyrolysis. Micropor Mesopor Mat 179:250–257. doi:10.1016/j.micromeso.2013.05.023

    CAS  Article  Google Scholar 

  24. Chiu YC, Chung MS (2003) Determination of optimal COD/nitrate ratio for biological denitrification. Int Biodeter Biodegr 51:43–49. doi:10.1016/S0964-8305(02)00074-4

    CAS  Article  Google Scholar 

  25. Chung J, Amin K, Kim S, Yoon S, Kwon K, Bae W (2014) Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor. Water Res 58:169–178. doi:10.1016/j.watres.2014.03.071

    CAS  Article  Google Scholar 

  26. Claus G, Kutzner HJ (1985b) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288. doi:10.1007/BF00252031

    CAS  Article  Google Scholar 

  27. Conlon WJ, Blandon FA, Moody J (1995) Cost comparison of treatment alternatives for the removal of nitrates and DBCP from Southern California groundwater. Desalination 103:89–100. doi:10.1016/0011-9164(95)00090-9

    CAS  Article  Google Scholar 

  28. Dahnke K, Moneta A, Veuger B, Soetaert K, Middelburg JJ (2012) Balance of assimilative and dissimilative nitrogen processes in a diatom-rich tidal flat sediment. Biogeosciences 9:4059–4070. doi:10.5194/bg-9-4059-2012

    CAS  Article  Google Scholar 

  29. Darbi A, Viraraghavan T, Butler R, Corkal D (2003) Pilot-scale evaluation of select nitrate removal technologies. J Environ Sci Heal A 38:703–1715. doi:10.1081/ESE-120022873

    CAS  Article  Google Scholar 

  30. De-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627. doi:10.1016/j.biortech.2009.09.043

    CAS  Article  Google Scholar 

  31. De-Bashan LE, Trejo A, VAR H, Hernandez JP, Bashan Y (2008) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight tolerant microalga with potential for removing ammonium from wastewater. Bioresour Technol 99:4980–4989. doi:10.1016/j.biortech.2007.09.065

    CAS  Article  Google Scholar 

  32. de la Noue J, Laliberte G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254

  33. Della Rocca C, Belgiorno V, Meric S (2005) Cotton-supported heterotrophic denitrification of nitrate-rich drinking water with a sand filtration post-treatment. Water SA 31:229–236

    CAS  Article  Google Scholar 

  34. Della Rocca C, Belgiorno V, Meric S (2006) A heterotrophic/autotrophic denitrification (HAD) approach for nitrate removal from drinking water. Process Biochem 41:1022–1028. doi:10.1016/j.procbio.2005.11.002

    CAS  Article  Google Scholar 

  35. Della Rocca C, Belgiorno V, Meriç S (2007) Overview of in-situ applicable nitrate removal processes. Desalination 204:46–62. doi:10.1016/j.desal.2006.04.023

    CAS  Article  Google Scholar 

  36. Devi MP, Swamy YV, Venkata Mohan S (2013) Nutritional mode influences lipid accumulation in microalgae with the function of carbon sequestration and nutrient supplementation. Bioresour Technol 142:278–286. doi:10.1016/j.biortech.2013.05.001

    CAS  Article  Google Scholar 

  37. Di Capua F, Milone I, Lakaniemi AM, Lens NLP, Esposito G (2017) High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures. Chem Eng J 313:591–598. doi:10.1016/j.cej.2016.12.106

    CAS  Article  Google Scholar 

  38. Elgood Z, Robertson WD, Schiff SL, Elgood R (2010) Nitrate removal and greenhouse gas production in a stream-bed denitrifying bioreactor. Ecol Eng 36:1575–1580. doi:10.1016/j.ecoleng.2010.03.011

    Article  Google Scholar 

  39. Eliassen R, Wyckoff BM, Tonkin CD (1995) Ion exchange for reclamation of reusable supplies. J Am Water Works Ass 57:1113–1122

    Article  Google Scholar 

  40. Ergas SJ, Reuss AF (2001) Hydrogenotrophic denitrification of drinking water using a hollow fibre membrane bioreactor. J Water Supply: Res Technol Aqua 50:161–171

  41. Fu G, Huangshen L, Guo Z, Zhou Q, Wu Z (2017) Effect of plant-based carbon sources on denitrifying microorganisms in a vertical flow constructed wetland. Bioresour Technol 224:214–221. doi:10.1016/j.biortech.2016.11.007

    CAS  Article  Google Scholar 

  42. Gayle BP, Boardman GD, Sherrard JH, Benoit RE (1989) Biological denitrification of water. J Environ Eng 15:930–943. doi:10.1016/0043-1354(95)00242-1

    Article  Google Scholar 

  43. Ghafari S, Hasan M, Aroua MK (2009) Effect of carbon dioxide and bicarbonate as inorganic carbon sources on growth and adaptation of hydrogenotrophic denitrifying bacteria. J Hazard Mater 162:1507–1513. doi:10.1016/j.jhazmat.2008.06.039

    CAS  Article  Google Scholar 

  44. Giwa A, Dufour V, Al Marzooqi F, Al Kaabi M, Hasan SW (2017) Brine management methods: recent innovations and current status. Desalination 407:1–23. doi:10.1016/j.desal.2016.12.008

    CAS  Article  Google Scholar 

  45. Gómez MA, González-López J, Hontoria-García E (2000) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater 80:69–80. doi:10.1016/S0304-3894(00)00282-X

    Article  Google Scholar 

  46. Green M, Shelef G (1994) Treatment of nitrate contaminated groundwater for drinking purposes. In: Zoller U (ed) Groundwater contamination and control. Marcel Dekker Publishers, New York, pp 587–606

    Google Scholar 

  47. Greenan CM, Moorman TB, Parkin TB, Kaspar TC, Jaynes DB (2009) Denitrification in wood chip bioreactors at different water flows. J Environ Qual 38:1664–1671. doi:10.2134/jeq2008.0413

    CAS  Article  Google Scholar 

  48. Gross H, Schnoor G, Treuter K (1986) Nitrate removal from groundwater by autotrophic microorganisms. J Water Supply Rest T 4:11–21

    Google Scholar 

  49. Guy KA, Xu H, Yang JC, Werth CJ, Shapley JR (2009) Catalytic nitrate and nitrite reduction with Pd−cu/PVP colloids in water: composition, structure, and reactivity correlations. J Phys Chem C 113:8177–8185. doi:10.1021/jp810049y

    CAS  Article  Google Scholar 

  50. Hamlin HJ, Michaels JT, Beaulaton CM, Graham WF, Dutt W, Steinbach P, Losordo TM, Schrader KK, Main KL (2008) Comparing denitrification rates and carbon sources in commercial scale up flow denitrification biological filters in aquaculture. Aquac Eng 38:79–92. doi:10.1016/j.aquaeng.2007.11.003

    Article  Google Scholar 

  51. Hao Z, Xu X, Wang D (2005) Reductive denitrification of nitrate by scrap iron filings. J Zhejiang Univ-Sc B 6:182–186. doi:10.1631/jzus.2005.B0182

    CAS  Article  Google Scholar 

  52. Haugen KS, Semmens MJ, Novak PJ (2002) A novel in situ technology for the treatment of nitrate contaminated groundwater. Water Res 36:3497–3506. doi:10.1016/S0043-1354(02)00043-X

  53. Hell F, Lahnsteiner J, Frischherz H, Baumgartner G (1998) Experience with full scale electrodialysis for nitrate and hardness removal. Desalination 117:173–180. doi:10.1016/S0011-9164(98)00088-5

    CAS  Article  Google Scholar 

  54. Her JJ, Huang JS (1995) Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough. Bioresour Technol 54:45–51. doi:10.1016/0960-8524(95)00113-1

    CAS  Article  Google Scholar 

  55. Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 25:743–755

    CAS  Article  Google Scholar 

  56. Hiraishi A, Khan ST (2003) Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment. Appl Microbiol Biotechnol 61:103–109. doi:10.1007/s00253-002-1198-y

    CAS  Article  Google Scholar 

  57. Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34:757–763. doi:10.1046/j.1529-8817.1998.340757.x

    CAS  Article  Google Scholar 

  58. Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: quantitative assessment of factors influencing nitrate uptake. Appl Environ Microbiol 66:133–139. doi:10.1128/AEM.66.1.133-139.2000

    CAS  Article  Google Scholar 

  59. Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642. doi:10.1016/j.watres.2004.03.015

    CAS  Article  Google Scholar 

  60. Jensen VB, Darby JL, Seidel C, Gorman C (2014) Nitrate in potable water supplies: alternative management strategies. Crit Rev Env Sci Tec 44:2203–2286. doi:10.1080/10643389.2013.828272

    CAS  Article  Google Scholar 

  61. Jeris JS, Beer C, Mueller JA (1974) High rate biological denitrification using a granular fluidized. J Water Poll Cont Fed 46:2118–2128

    CAS  Google Scholar 

  62. Ju X, Field JA, Sierra-Alvarez R, Salazar M, Bentley H, Bentley R (2007) Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol Bioeng 96:1073–1082. doi:10.1002/bit.21197

    CAS  Article  Google Scholar 

  63. Justin P, Kelly DP (1978a) Growth kinetics of Thiobacillus denitrificans in anaerobic and aerobic chemostat culture. J Gen Microbiol 107:123–130. doi:10.1099/00221287-107-1-123

    CAS  Article  Google Scholar 

  64. Kalaruban M, Loganathan P, Shim WG, Kandasamy J, Naidu G, Nguyen TV, Vigneswaran S (2016) Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: batch and fluidised-bed adsorption studies. Sep Purif Technol 158:62–70. doi:10.1016/j.seppur.2015.12.022

    CAS  Article  Google Scholar 

  65. Kamp A, de Beer D, Nitsch JL, Lavik G, Stief P (2011) Diatoms respire nitrate to survive dark and anoxic conditions. P Natl Acad Sci USA 108:5649–5654. doi:10.1073/pnas.1015744108

    Article  Google Scholar 

  66. Kapoor A, Viraraghavan T (1997) Nitrate removal from drinking water-review. J Environ Eng 123:371–380. doi:10.1061/(ASCE)0733-9372

    CAS  Article  Google Scholar 

  67. Karanasios KA, Vasiliadou IA, Pavlou S, Vayenas DV (2010) Hydrogenotrophic denitrification of potable water: a review. J Hazard Mater 180:20–37. doi:10.1016/j.jhazmat.2010.04.090

    CAS  Article  Google Scholar 

  68. Kelso BHL, Smith RV, Laughlin RJ (1999) Effects of carbon substrates on nitrite accumulation in freshwater sediments. Appl Environ Microbiol 65:61–66

    CAS  Google Scholar 

  69. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65:789–798. doi:10.1093/jxb/eru001

    CAS  Article  Google Scholar 

  70. Kumar M, Chakraborty S (2006) Chemical denitrification of water by zero-valent magnesium powder. J Hazard Mater 135:112–121. doi:10.1016/j.jhazmat.2005.11.031

    CAS  Article  Google Scholar 

  71. Kurt M, Dunn IJ, Bourne JR (1987) Biological denitrification of drinking water using autotrophic organisms with hydrogen in a fluidized-bed biofilm bioreactor. Biotechnol Bioeng 29:493–501. doi:10.1002/bit.260290414

    CAS  Article  Google Scholar 

  72. Lee K, Lee CG (2001) Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol Bioprocess Eng E 6:194–199. doi:10.1007/BF02932550

    CAS  Article  Google Scholar 

  73. Lee KC, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052. doi:10.1016/S0043-1354(01)00425-0

    CAS  Article  Google Scholar 

  74. Lew B, Stief P, Beliavski M, Ashkenazi A, Svitlica O, Khan A, Tarre S, de Beer D, Green M (2012) Characterization of denitrifying granular sludge with and without the addition of external carbon source. Bioresour Technol 124:413–420. doi:10.1016/j.biortech.2012.08.049

    CAS  Article  Google Scholar 

  75. Li P, Zuo J, Xing W, Tang L, Ye X, Li Z, Yuan L, Wang K, Zhang H (2013) Starch/polyvinyl alcohol blended materials used as solid carbon source for tertiary denitrification of secondary effluent. J Environ Sci 25:1972–1979. doi:10.1016/S1001-0742(12)60259-9

    CAS  Article  Google Scholar 

  76. Liessens J, Germonpre R, Beernaert S, Verstraete W (1993) Removing nitrate with a methylotrophic fluidized bed: technology and operating performance. J Am Water Works Ass 84:144–154

    Article  Google Scholar 

  77. Lin Y-F, Jing S-R, Lee D-Y, Chang Y-F, Shih K-C (2008) Nitrate removal from groundwater using constructed wetlands under various hydraulic loading rates. Bioresour Technol 99:7504–7513. doi:10.1016/j.biortech.2008.02.017

    CAS  Article  Google Scholar 

  78. Lina Y-F, Jinga S-R, Wangb T-W, Leea D-Y (2002) Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ Pollut 119:413–420

    Article  Google Scholar 

  79. Liu X, Clifford DA (1996) Ion exchange with denitrified brine reuse. J Am Water Works Ass 88:88–99

    CAS  Article  Google Scholar 

  80. Liu LH, Koenig A (2002) Use of limestone for pH control in autotrophic denitrification: batch experiments. Process Biochem 37:885–893. doi:10.1016/s0032-9592(01)00302-8

    CAS  Article  Google Scholar 

  81. Liu K, Li J, Qiao H, Lin A, Wang G (2012) Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol 114:26–32. doi:10.1016/j.biortech.2012.02.003

    CAS  Article  Google Scholar 

  82. Luk GK, Au-Yeung WC (2002) Experimental investigation on the chemical reduction of nitrate from groundwater. Adv Environ Res 6:441–453

    CAS  Article  Google Scholar 

  83. Lyubchenko OA, Mogilevich NF, Gvozdyak PI (1996) Microbial nitrification and sewage treatment. J Water Chem Techno 18:98–112

    CAS  Google Scholar 

  84. Malaeb L, Ayoub GM (2011) Reverse osmosis technology for water treatment: state of the art review. Desalination 267:1–8

    CAS  Article  Google Scholar 

  85. Mansell BO, Schroeder ED (2002) Hydrogenotrophic denitrification in a microporous membrane bioreactor. Water Res 36:4683–4690

    CAS  Article  Google Scholar 

  86. Matějů V, Čižinská S, Krejčí J, Janoch T (1992) Biological water denitrification – a review. Enzyme Microb Tech 14:170–183. doi:10.1016/0141-0229(92)90062-S

    Article  Google Scholar 

  87. Maxwell E, Peterson WE, CM O’Reilly (2017) Enhanced nitrate reduction within a constructed wetland system: Nitrate removal within groundwater flow. Wetlands: 1–10. doi: 10.1007/s13157-017-0877-5

  88. McAdam EJ, Judd SJ (2007) Denitrification from drinking water using a membrane bioreactor: chemical and biochemical feasibility. Water Res 41:4242–4250. doi:10.1016/j.watres.2007.05.059

    CAS  Article  Google Scholar 

  89. McAdam EJ, Judd SJ (2008) Biological treatment of ion-exchange brine regenerate for re-use: a review. Sep Purif Technol 62:264–272

    CAS  Article  Google Scholar 

  90. Midaoui AE, Elhannouni F, Taky M, Chay L, Menkouchi Sahli MA, Echihabi L, Hafsi M (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29:235–244

    Article  Google Scholar 

  91. Mohseni-Bandpi A, Elliott DJ, Zazouli MA (2013) Biological nitrate removal processes from drinking water supply-a review. J Environ Health Sci Eng 11:35. doi:10.1186/2052-336X-11-35

    CAS  Article  Google Scholar 

  92. Moon HS, Chang SW, Nam K, Choe J, Kim JY (2006) Effect of reactive media composition and co-contaminants on sulfur-based autotrophic denitrification. Environ Pollut 144:802–807. doi:10.1016/j.envpol.2006.02.020

    CAS  Article  Google Scholar 

  93. Moon HS, Shin DY, Nam K, Kim JY (2008) A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier. Chemosphere 73:723–728. doi:10.1016/j.chemosphere.2008.06.065

    CAS  Article  Google Scholar 

  94. Moreno B, Gómez MA, González-López J, Hontoria E (2005) Inoculation of a submerged filter for biological denitrification of nitrate polluted groundwater: a comparative study. J Hazard Mater 117:141–147. doi:10.1016/j.jhazmat.2004.09.027

    CAS  Article  Google Scholar 

  95. Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815. doi:10.1016/j.watres.2006.06.011

    CAS  Article  Google Scholar 

  96. Nataraj SK, Hosamani KM, Aminabhavi TM (2006) Electrodialytic removal of nitrates and hardness from simulated mixtures using ion-exchange membranes. J Appl Polym Sci 99:1788–1794. doi:10.1002/app.22710

    CAS  Article  Google Scholar 

  97. Oh SE, Yoo YB, Young JC, Kim IS (2001) Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions. J Biotechnol 92:1–8. doi:10.1016/S0168-1656(01)00344-3

    CAS  Article  Google Scholar 

  98. Ovez B (2006) Batch biological denitrification using Arundo donax, Glycyrrhiza glabra, and Gracilaria verrucosa as carbon source. Process Biochem 41:1289–1295. doi:10.1016/j.procbio.2005.12.030

    CAS  Article  Google Scholar 

  99. Park S, Yu J, Byun I, Cho S, Park T, Lee T (2011) Microbial community structure and dynamics in a mixotrophic nitrogen removal process using recycled spent caustic under different loading conditions. Bioresour Technol 102:7265–7271. doi:10.1016/j.biortech.2011.04.091

    CAS  Article  Google Scholar 

  100. Pérez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283. doi:10.1016/j.watres.2011.10.046

    CAS  Article  Google Scholar 

  101. Petrovic A, Simonic M (2015) Effect of Chlorella sorokiniana on the biological denitrification of drinking water. Environ Sci Pollut Res 22:5171–5183. doi:10.1007/s11356-014-3745-3

    CAS  Article  Google Scholar 

  102. Pirsaheb M, Khosravi T, Sharafi K, Mouradi M (2015) Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalin Water Treat 57:12. doi:10.1080/19443994.2015.1004592

    CAS  Article  Google Scholar 

  103. Rautenbach R, Kopp W, Opbergen G, Hellekes R (1987) Nitrate reduction of well water by reverse osmosis and electrodialysis – studies on plant performance and costs. Desalination 65:241–258. doi:10.1016/0011-9164(87)90137-8

    CAS  Article  Google Scholar 

  104. Riaño B, Hernández D, García-González MC (2012) Microalgal-based systems for wastewater treatment: effect of applied organic and nutrient loading rate on biomass composition. Ecol Eng 49:112–117

    Article  Google Scholar 

  105. Richardson D, Felgate H, Watmough N, Thomson A, Baggs E (2009) Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle – could enzymic regulation hold the key? Trends Biotechnol 27:388–397. doi:10.1016/j.tibtech.2009.03.009

    CAS  Article  Google Scholar 

  106. Rivetta MO, Bussb SR, Morganb P, Smith JWN, Bemmentb CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232. doi:10.1016/j.watres.2008.07.020

    CAS  Article  Google Scholar 

  107. Robertson WD, Blowes DW, Ptacek CJ, Cherry JA (2000) Long term performance of in situ reactive barriers for nitrate remediation. Groundwater 38:689–695. doi:10.1111/j.1745-6584.2000.tb02704.x

    CAS  Article  Google Scholar 

  108. Ruppenthal S (2004) Treating water high in nitrate to supplement supply. J Am Water Works Ass 96:68–70

    CAS  Article  Google Scholar 

  109. Sahinkaya E, Dursun N (2012) Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement. Chemosphere 89:144–149. doi:10.1016/j.chemosphere.2012.05.029

    CAS  Article  Google Scholar 

  110. Sahinkaya E, Yurtsever A, Aktas O, Ucar D, Wang Z (2015) Sulfur-based autotrophic denitrification of drinking water using a membrane bioreactor. Chem Eng J 268:180–186. doi:10.1016/j.cej.2015.01.045

    CAS  Article  Google Scholar 

  111. Sahinkaya E, Yurtsever A, Ucar D (2016) A novel elemental sulfur-based mixotrophic denitrifying membrane bioreactor for simultaneous Cr (VI) and nitrate reduction. J Hazard Mater. doi:10.1016/j.jhazmat.2016.02.032

  112. Sakakibara Y, Kuroda M (1993) Electric prompting and control of denitrification. Biotechnol Bioeng 42:535–537. doi:10.1002/bit.260420418

    CAS  Article  Google Scholar 

  113. Samatya S, Kabay N, Yuksel U, Arda M, Yuksel M (2006) Removal of nitrate from aqueous solution by nitrate selective ion exchangerResins. React Funct Polym 66:1206–1214. doi:10.1016/j.reactfunctpolym.2006.03.009

    CAS  Article  Google Scholar 

  114. Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010a) Denitrifying bioreactors-an approach for reducing nitrate loads to receiving waters. Ecol Eng 36:1532–1543. doi:10.1016/j.ecoleng.2010.04.008

    Article  Google Scholar 

  115. Schoeman JJ, Steyn A (2003) Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 155:15–26. doi:10.1016/S0011-9164(03)00235-2

    CAS  Article  Google Scholar 

  116. Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario analysis of past and future trends. Global Biogeochem Cy 24. doi:10.1029/2009GB003587

  117. Sharma SK, Sobti RC (2012) Nitrate removal from ground water: a review. E-J Chem 9:1667–1675. doi:10.1155/2012/154616

    CAS  Article  Google Scholar 

  118. Shrimali M, Singh KP (2001) New methods of nitrate removal from water. Environ Pollut 112:351–359. doi:10.1016/S0269-7491(00)00147-0

    CAS  Article  Google Scholar 

  119. Sierra-Alvarez R, Beristan-Cardoso R, Salazar M, Gomez J, Razo-Flores E, Field JA (2007) Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Res 41:1253–1262. doi:10.1016/j.watres.2006.12.039

    CAS  Article  Google Scholar 

  120. Smith RL, Buckwalter SP, Repert DA, Miller DN (2005) Small-scale hydrogen-oxidizing denitrifying bioreactor for treatment of nitrate-contaminated drinking water. Water Res 39:2014–2023. doi:10.1016/j.watres.2005.03.024

    CAS  Article  Google Scholar 

  121. Soares MIM (2000) Biological denitrification of groundwater. Water Air Soil Poll 123:183–193. doi:10.1023/A:1005242600186

    CAS  Article  Google Scholar 

  122. Sun Y, Nemati M (2012) Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresour Technol 114:207–216. doi:10.1016/j.biortech.2012.03.061

    CAS  Article  Google Scholar 

  123. Tsai HH, Ravindran V, Williams MD, Pirbazari M (2004) Forecasting the performance of membrane bioreactor process for groundwater denitrification. J Environ Eng Sci 3:507–521. doi:10.1139/s04-013

    CAS  Article  Google Scholar 

  124. USEPA (1987) Estimated national occurrence and exposure to nitrate and nitrite in public drinking water supplies. Washington, DC, United States Environmental Protection Agency, Office of Drinking Water

    Google Scholar 

  125. USEPA (2013) Introduction to in situ bioremediation of groundwater. United States Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC

    Google Scholar 

  126. van der Hoek JP, van der Ven PJM, Klapwijk A (1988) Combined ion exchange/biological denitrification for nitrate removal from ground water under different process conditions. Water Res 22:679–684. doi:10.1016/0043-1354(88)90178-9

  127. Vasiliadou IA, Pavlou S, Vayenas DV (2006) A kinetic study of hydrogenotrophic denitrification. Process Biochem 41:1401–1408. doi:10.1016/j.procbio.2006.02.002

    CAS  Article  Google Scholar 

  128. Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103. doi:10.1016/j.tree.2005.11.015

    Article  Google Scholar 

  129. Volokita M, Belkin S, Abeliovich A, Soares MIM (1996b) Biological denitrification of drinking water using newspaper. Water Res 30:965–971. doi:10.1016/0043-1354(95)00242-1

    CAS  Article  Google Scholar 

  130. Waki T, Murayma KI, Kawato Y, Ichikawa K (1980) Transient characteristics of Paracoccus denitrificans with changes between aerobic and anaerobic conditions. J Ferment Technol 58:243–249

    CAS  Google Scholar 

  131. Wang X, Xing L, Qiu T, Han M (2013) Simultaneous removal of nitrate and pentachlorophenol from simulated groundwater using a biodenitrification reactor packed with corncob. Environ Sci Pollut Res 20:2236–2243. doi:10.1007/s11356-012-1092-9

    CAS  Article  Google Scholar 

  132. Wang Z, Fei X, He S, Huang J, Zhou W (2017) Comparison of heterotrophic and autotrophic denitrification processes for treating nitrate-contaminated surface water. Sci Total Environ 579:1706–1714. doi:10.1016/j.scitotenv.2016.11.194

    CAS  Article  Google Scholar 

  133. Weigelhofer G, Hein T (2015) Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water. Environ Sci Pollut Res 22:13534–13545. doi:10.1007/s11356-015-4634-0

    CAS  Article  Google Scholar 

  134. WHO (1985b) Health hazards from nitrate in drinking-water. Report on a WHO meeting, Copenhagen, 5–9 march 1984. WHO Regional Office for Europe, Copenhagen (Environmental Health Series No. 1)

    Google Scholar 

  135. Zhang Y, Chen Y, Chen G (2003) Chemical denitrification of nitrate from groundwater. Huan Jing Ke Xue 24:9–12

    Google Scholar 

  136. Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor. J Hazard Mater 192:1033–1039. doi:10.1016/j.jhazmat.2011.06.008

    CAS  Article  Google Scholar 

  137. Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur limestone. J Environ Sci 23:1761–1769. doi:10.1016/S1001-0742(10)60635-3

    CAS  Article  Google Scholar 

  138. Zou G, Papirio S, Lakaniemi AM, Ahoranta SH, Puhakka JA (2016) High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chem Eng J 284:1287–1294. doi:10.1016/j.cej.2015.09.074

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the University of Tehran under grant number 8104956/1/03, KRIBB Research Initiative Program, and the Advanced Biomass R&D Center (ABC) of the Global Frontier Program funded by the Ministry of Science, ICT, and Future Planning (2010-0029723).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohammad-Hossein Sarrafzadeh or Hee-Mock Oh.

Additional information

Highlights

• Technical and cost comparison of several approaches of nitrate removal from drinking water, including physicochemical and biological techniques

• Expression of the salient features of autotrophic nitrate removal, especially hydrogenotrophic denitrification over other methods

• Refer to the application of microalgae-based water treatment as a nature-inspired approach for water treatment

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rezvani, F., Sarrafzadeh, MH., Ebrahimi, S. et al. Nitrate removal from drinking water with a focus on biological methods: a review. Environ Sci Pollut Res 26, 1124–1141 (2019). https://doi.org/10.1007/s11356-017-9185-0

Download citation

Keywords

  • Drinking water
  • Nitrate removal technology
  • Autotrophic and heterotrophic denitrification
  • Assimilatory and dissimilatory nitrate reduction
  • Cost
  • Microalgae