Skip to main content
Log in

Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Triclocarban (TCC) is an antibacterial agent found in pharmaceuticals and personal care products (PPCP). It is potentially bioaccumulative and an endocrine disruptor, being classified as a contaminant of emerging concern (CEC). In normal uses, approximately 96% of the used TCC can be washed down the drain going into the sewer system and eventually enter in the aquatic environment. UV photolysis can be used to photodegrade TCC and ecotoxicity assays could indicate the photodegradation efficiency, since the enormous structural diversity of photoproducts and their low concentrations do not always allow to identify and quantify them. In this work, the TCC was efficiently degraded by UVC direct photolysis and the ecotoxicity of the UV-treated mixtures was investigated. Bioassays indicates that Daphnia similis (48 h EC50 = 0.044 μM) was more sensitive to TCC than Pseudokirchneriella subcapitata (72 h IC50 = 1.01 μM). TCC and its photoproducts caused significant effects on Eisenia andrei biochemical responses (catalase and glutathione-S-transferase); 48 h was a critical exposure time, since GST reached the highest activity values. UVC reduced the TCC toxic effect after 120 min. Furthermore, TCC was photodegraded in domestic wastewater which was simultaneously disinfected for total coliform bacterial (TCB) (360 min) and Escherichia coli (60 min).

TCC degradation and ecotoxicological assessment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe T, Saito H, Niikura Y et al (2001) Embryonic development assay with Daphnia magna: application to toxicity of aniline derivatives. Chemosphere 45:487–495. doi:10.1016/S0045-6535(01)00049-2

    Article  CAS  Google Scholar 

  • Adema DMM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59:125–134. doi:10.1007/BF00020773

    Article  CAS  Google Scholar 

  • Aebi H (1984) Oxygen radicals in biological systems – catalase in vitro. Methods Enzymol 105:121–126. doi:10.1016/S0076-6879(84)05016-3

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  • Baumann A, Lohmann W, Rose T et al (2010) Electrochemistry-mass spectrometry unveils the formation of reactive triclocarban metabolites. Drug Metab Dispos 38:2130–2138. doi:10.1124/dmd.110.034546

    Article  CAS  Google Scholar 

  • Binelli A, Parolini M, Pedriali A, Provini A (2010) Antioxidant activity in the zebra mussel (Dreissena polymorpha) in response to triclosan exposure. Water Air Soil Pollut 217:421–430. doi:10.1007/s11270-010-0597-4

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Canonica S, Laubscher H-U (2008) Inhibitory effect of dissolved organic matter on triplet-induced oxidation of aquatic contaminants. Photochem Photobiol Sci 7:547. doi:10.1039/b719982a

    Article  CAS  Google Scholar 

  • Canton JH, Slooff W, Kool HJ et al (1985) Toxicity, biodegradability, and accumulation of a number of Cl/N-containing compounds for classification and establishing water quality criteria. Regul Toxicol Pharmacol 5:123–131. doi:10.1016/0273-2300(85)90026-1

    Article  CAS  Google Scholar 

  • Chen J, Ahn KC, Gee NA et al (2008) Triclocarban enhances testosterone action: a new type of endocrine disruptor? Endocrinology 149:1173–1179. doi:10.1210/en.2007-1057

  • Chen X, Wang X, Gu X et al (2017) Oxidative stress responses and insights into the sensitivity of the earthworms Metaphire guillelmi and Eisenia fetida to soil cadmium. Sci Total Environ 574:300–306. doi:10.1016/j.scitotenv.2016.09.059

    Article  CAS  Google Scholar 

  • Ding SL, Wang XK, Jiang WQ et al (2013) Photodegradation of the antimicrobial triclocarban in aqueous systems under ultraviolet radiation. Environ Sci Pollut Res 20:3195–3201. doi:10.1007/s11356-012-1239-8

    Article  CAS  Google Scholar 

  • Ding S-L, Wang X-K, Jiang W-Q et al (2015) Influence of pH, inorganic anions, and dissolved organic matter on the photolysis of antimicrobial triclocarban in aqueous systems under simulated sunlight irradiation. Environ Sci Pollut Res Int 22:5204–5211. doi:10.1007/s11356-014-3686-x

    Article  CAS  Google Scholar 

  • ECB (2006) European Union Risk Assessment Report 3,4-dichloroaniline, Series: 3r

  • Egan M (2013) Biosolids management strategies: an evaluation of energy production as an alternative to land application. Environ Sci Pollut Res 20:4299–4310. doi:10.1007/s11356-013-1621-1

    Article  CAS  Google Scholar 

  • Fu Q, Sanganyado E, Ye Q, Gan J (2015) Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environ Pollut 210:137–144. doi:10.1016/j.envpol.2015.12.003

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halden RU, Paull DH (2004) Analysis of triclocarban in aquatic samples by liquid chromatography electrospray ionization mass spectrometry. Environ Sci Technol 38:4849–4855. doi:10.1021/es049524f

    Article  CAS  Google Scholar 

  • Halden RU, Paull DH (2005) Co-occurrence of triclocarban and triclosan in U.S. water resources. Environ Sci Technol 39:1420–1426. doi:10.1021/es049071e

    Article  CAS  Google Scholar 

  • Hinther A, Bromba CM, Wulff JE, Helbing CC (2011) Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol 45:5395–5402. doi:10.1021/es1041942

    Article  CAS  Google Scholar 

  • Lin D, Zhou Q, Xie X, Liu Y (2010) Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere 81:1328–1333. doi:10.1016/j.chemosphere.2010.08.027

    Article  CAS  Google Scholar 

  • Lin D, Xie X, Zhou Q, Liu Y (2012) Biochemical and genotoxic effect of triclosan on earthworms (Eisenia fetida) using contact and soil tests. Environ Toxicol 27:385–392. doi:10.1002/tox.20651

    Article  CAS  Google Scholar 

  • Liska DJ (1998) The detoxification enzyme systems. Altern Med Rev 3:187–198

    CAS  Google Scholar 

  • Maas-Diepeveen J, Leeuwen C (1986) Aquatic toxicity of aromatic nitro compounds and anilines to several freshwater species. Report no. 86-42. Aquatic toxicity of aromatic nitro compounds and anilines to several freshwater species. Laboratory for Ecotoxicology, Institutefor inland water management and waste water Treatment

  • Macherius A, Lapen DR, Reemtsma T et al (2014) Triclocarban, triclosan and its transformation product methyl triclosan in native earthworm species four years after a commercial-scale biosolids application. Sci Total Environ 472:235–238. doi:10.1016/j.scitotenv.2013.10.113

    Article  CAS  Google Scholar 

  • Malato S, Blanco J, Vidal A et al (2003) Applied studies in solar photocatalytic detoxification: an overview. Sol Energy 75:329–336. doi:10.1016/j.solener.2003.07.017

    Article  CAS  Google Scholar 

  • Matés JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  Google Scholar 

  • Matés JM, Pérez-Gómez C, De Castro IN (1999) Antioxidant enzymes and human diseases. Clin Biochem 32:595–603. doi:10.1016/S0009-9120(99)00075-2

    Article  Google Scholar 

  • Mayer P, Frickmann J, Christensen ER, Nyholm N (1998) Influence of growth conditions on the results obtained in algal toxicity tests. Environ Toxicol Chem 17:1091–1098. doi:10.1002/etc.5620170615

    Article  CAS  Google Scholar 

  • Moreira FC, Garcia-Segura S, Boaventura RAR et al (2014) Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode. Appl Catal B Environ 160:492–505. doi:10.1016/j.apcatb.2014.05.052

    Article  Google Scholar 

  • OECD 201 (2006) Test No. 201: Alga, Growth inhibition test. OECD Publishing

  • OECD 202 (2004) Test No. 202: Daphnia sp. Acute immobilisation test. OECD Publishing

  • OECD 207 (1984) Guidelines for the testing of chemicals, Section 2, Test No. 207: earthworm, acute toxicity tests. 9

  • Rikans LE, Hornbrook KR (1997) Lipid peroxidation, antioxidant protection and aging. Biochim Biophys Acta - Mol Basis Dis 1362:116–127. doi:10.1016/S0925-4439(97)00067-7

    Article  CAS  Google Scholar 

  • Rosario-Ortiz FL, Canonica S (2016) Probe compounds to assess the photochemical activity of dissolved organic matter. Environ Sci Technol 50:12532–12547. doi:10.1021/acs.est.6b02776

    Article  CAS  Google Scholar 

  • Saggioro EM, Oliveira AS, Buss DF et al (2015) Photo-decolorization and ecotoxicological effects of solar compound parabolic collector pilot plant and artificial light photocatalysis of indigo carmine dye. Dyes Pigments 113:571–580. doi:10.1016/j.dyepig.2014.09.029

    Article  CAS  Google Scholar 

  • Sauvé S, Desrosiers M (2014) A review of what is an emerging contaminant. Chem Cent J 8:15. doi:10.1186/1752-153X-8-15

    Article  Google Scholar 

  • Shen JY, Chang MS, Yang S-H, Wu GJ (2012) Simultaneous determination of triclosan, triclocarban, and transformation products of triclocarban in aqueous samples using solid-phase micro-extraction-HPLC-MS/MS. J Sep Sci 35:2544–2552. doi:10.1002/jssc.201200181

    Article  CAS  Google Scholar 

  • Snyder EH, O’Connor GA (2013) Risk assessment of land-applied biosolids-borne triclocarban (TCC). Sci Total Environ 442:437–444. doi:10.1016/j.scitotenv.2012.10.007

    Article  CAS  Google Scholar 

  • Snyder EH, O’Connor GA, McAvoy DC (2011) Toxicity and bioaccumulation of biosolids-borne triclocarban (TCC) in terrestrial organisms. Chemosphere 82:460–467. doi:10.1016/j.chemosphere.2010.09.054

    Article  CAS  Google Scholar 

  • Spasiano D, Russo D, Vaccaro M et al (2016a) Removal of benzoylecgonine from water matrices through UV254/H2O2 process: reaction kinetic modeling, ecotoxicity and genotoxicity assessment. J Hazard Mater 318:515–525. doi:10.1016/j.jhazmat.2016.07.034

    Article  CAS  Google Scholar 

  • Spasiano D, Siciliano A, Race M et al (2016b) Biodegradation, ecotoxicity and UV254/H2O2 treatment of imidazole, 1-methyl-imidazole and N,N’-alkyl-imidazolium chlorides in water. Water Res 106:450–460. doi:10.1016/j.watres.2016.10.026

    Article  CAS  Google Scholar 

  • Subedi B, Codru N, Dziewulski DM et al (2015) A pilot study on the assessment of trace organic contaminants including pharmaceuticals and personal care products from on-site wastewater treatment systems along Skaneateles Lake in New York State, USA. Water Res 72:28–39. doi:10.1016/j.watres.2014.10.049

    Article  CAS  Google Scholar 

  • Tamura I, Kagota K-I, Yasuda Y et al (2013) Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol. J Appl Toxicol 33:1222–1229. doi:10.1002/jat.2771

    CAS  Google Scholar 

  • Tarnow P, Tralau T, Hunecke D, Luch A (2013) Effects of triclocarban on the transcription of estrogen, androgen and aryl hydrocarbon receptor responsive genes in human breast cancer cells. Toxicol in Vitro 27:1467–1475. doi:10.1016/j.tiv.2013.03.003

    Article  CAS  Google Scholar 

  • USEPA (1978) Microbiological methods for monitoring the environment: water and waste—EPA/600/878–017. Cincinnati

  • USEPA (1996) Ecological effects test guidelines. Earthworm Subchronic Toxicity Test—EPA 850.62.00

  • USEPA (2012) Guidelines for water reuse—EPA/600/R-12/618. Washington

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64:178–189. doi:10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  • Vilar VJP, Gomes AIE, Ramos VM et al (2009) Solar photocatalysis of a recalcitrant coloured effluent from a wastewater treatment plant. Photochem Photobiol Sci 8:691. doi:10.1039/b817541a

    Article  CAS  Google Scholar 

  • Wang X-K, Jiang X-J, Wang Y-N et al (2014) Occurrence, distribution, and multi-phase partitioning of triclocarban and triclosan in an urban river receiving wastewater treatment plants effluent in China. Environ Sci Pollut Res 21:7065–7074. doi:10.1007/s11356-014-2617-1

    Article  CAS  Google Scholar 

  • Wenk J, von Gunten U, Canonica S (2011) Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ Sci Technol 45:1334–1340. doi:10.1021/es102212t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with Ciência Sem Fronteiras Program support (CNPq Process No. 400429/2014-4). The authors thank the undergraduate students Ferreira, I.J. (CNPq Process No. 159925/2015-0) and Sales, S. (CNPq Process No. 117762/2015-6). Saggioro, E.M. thanks FAPERJ project (E-26/010.002117/2015) and Satyro, S. thanks CNPq (Process No. 150384/2015-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suéllen Satyro.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 21 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyro, S., Saggioro, E.M., Veríssimo, F. et al. Triclocarban: UV photolysis, wastewater disinfection, and ecotoxicity assessment using molecular biomarkers. Environ Sci Pollut Res 24, 16077–16085 (2017). https://doi.org/10.1007/s11356-017-9165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9165-4

Keywords

Navigation