Skip to main content
Log in

Identification of water quality management policy of watershed system with multiple uncertain interactions using a multi-level-factorial risk-inference-based possibilistic-probabilistic programming approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, a multi-level-factorial risk-inference-based possibilistic-probabilistic programming (MRPP) method is proposed for supporting water quality management under multiple uncertainties. The MRPP method can handle uncertainties expressed as fuzzy-random-boundary intervals, probability distributions, and interval numbers, and analyze the effects of uncertainties as well as their interactions on modeling outputs. It is applied to plan water quality management in the Xiangxihe watershed. Results reveal that a lower probability of satisfying the objective function (θ) as well as a higher probability of violating environmental constraints (q i ) would correspond to a higher system benefit with an increased risk of violating system feasibility. Chemical plants are the major contributors to biological oxygen demand (BOD) and total phosphorus (TP) discharges; total nitrogen (TN) would be mainly discharged by crop farming. It is also discovered that optimistic decision makers should pay more attention to the interactions between chemical plant and water supply, while decision makers who possess a risk-averse attitude would focus on the interactive effect of q i and benefit of water supply. The findings can help enhance the model’s applicability and identify a suitable water quality management policy for environmental sustainability according to the practical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bottrel S, Amorim C, Ramos V, Romão G, Leao M (2015) Ozonation and peroxone oxidation of ethylenethiourea in water: operational parameter optimization and by-product identification. Environ Sci Pollut Res 22:903–908

    Article  CAS  Google Scholar 

  • Environment Protection Bureau of Hubei Province (2001-2014) Annual Bulletin on Environment Situations in Hubei Province, China

  • Environmental Science Research, and Design Institute of Zhejiang Province (2014) Environmental technology verification report—refinancing. Hubei Chemical Group Co., Xingfa, Hangzhou, China

    Google Scholar 

  • Fleifle A, Saavedra O, Yoshimura C, Elzeir M, Tawfik A (2016) Optimization of integrated water quality management for agricultural efficiency and environmental conservation. Environ Sci Pollut Res 21:8095–8111

    Article  CAS  Google Scholar 

  • Habersack H, Samek R (2016) Water quality issues and management of large rivers. Environ Sci Pollut Res 23:11393–11394

    Article  CAS  Google Scholar 

  • Huang GH (1998) A hybrid inexact-stochastic water management model. Eur J Oper Res 107(1):137–158

    Article  Google Scholar 

  • Kahraman C, Kaya İ (2009) Fuzzy process capability indices for quality control of irrigation water. Stoch Env Res Risk A 4(23):451–462

    Article  Google Scholar 

  • Katagiri H, Sakawa M, Kato K, Nishizaki I (2008) Interactive multiobjective fuzzy random linear programming: maximization of possibility and probability. Eur J Oper Res 188(2):530–539

    Article  Google Scholar 

  • Kataoka S (1963) A stochastic programming model. Econometrica 31:181–196

    Article  Google Scholar 

  • Kataria M, Elofsson K, Hasler B (2010) Distributional assumptions in chance-constrained programming models of stochastic water pollution. Environmental Modeling & Assessment 15(4):273–281

    Article  Google Scholar 

  • Kato K, Sakawa M, Katagiri H, Perkgoz C (2010) An interactive fuzzy satisficing method based on fractile criterion optimization for multiobjective stochastic integer programming problems. Expert Syst Appl 37:6012–6017

    Article  Google Scholar 

  • Kerachian R, Karamouz M (2007) A stochastic conflict resolution model for water quality management in reservoir–river systems. Adv Water Resour 30(4):866–882

    Article  Google Scholar 

  • Khadam IM, Kaluarachchi JJ (2006) Trade-offs between cost minimization and equity in water quality management for agricultural watersheds. Water Resour Res 42:W10404

    Article  Google Scholar 

  • Li YP, Huang GH, Yang ZF, Nie SL (2008) IFMP: interval-fuzzy multistage programming for water resources management under uncertainty. Resour Conserv Recycl 52(5):800–812

    Article  Google Scholar 

  • Li YP, Huang GH, Huang YF, Zhou YF (2009) A multistage fuzzy-stochastic programming model for supporting sustainable water resources allocation and management. Environ Model Softw 24:786–797

    Article  CAS  Google Scholar 

  • Li YP, Huang GH, Nie SL (2010) Planning water resources management system using a fuzzy-boundary interval-stochastic programming method. Adv Water Resour 33:1105–1117

    Article  Google Scholar 

  • Li YP, Huang GH, Li HZ, Liu J (2014) A recourse-based interval fuzzy programming model for point-nonpoint source effluent trading under uncertainty. J Am Water Resour Assoc 50(5):1191–1207

    Article  Google Scholar 

  • Lin YP, Chen BS (2016) Natural resource management for nonlinear stochastic biotic-abiotic ecosystems: robust reference tracking control strategy using limited set of controllers. Journal of Environmental Informatics 27(1):14–30

    Google Scholar 

  • Liu J, Li YP, Huang GH, Zeng XT (2014) A dual-interval fixed-mix stochastic programming method for water resources management under uncertainty. Resour Conserv Recycl 88:50–66

    Article  Google Scholar 

  • Liu J, Li YP, Huang GH, Nie S (2015) Development of a fuzzy-boundary interval programming method for water quality management under uncertainty. Water Resour Manag 29:1169–1191

    Article  Google Scholar 

  • Martín-Fernández L, Ruiz DP, Torija AJ, Míguez J (2016) A Bayesian method for model selection in environmental noise prediction. Journal of Environmental Informatics 27(1):31–42

    Google Scholar 

  • Mishra AK, Kumar B, Dutta J (2016) Prediction of hydraulic conductivity of soil bentonite mixture using hybrid-ANN approach. Journal of Environmental Informatics 27(2):98–105

    Google Scholar 

  • Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Montgomery DC, Runger GC (2003) Applied statistics and probability for engineers, 3rd edn. Wiley, New York

    Google Scholar 

  • Nematian J (2016) An extended two-stage stochastic programming approach for water resources management under uncertainty. Journal of Environmental Informatics 27(2):72–84

    Google Scholar 

  • Riverol C, Pilipovik MV (2008) Assessing the seasonal influence on the quality of seawater using fuzzy linear programming. Desalination 230(1–3):175–182

    Article  CAS  Google Scholar 

  • Romero E, Garnier J, Billen G, Peters F, Lassaletta L (2016) Water management practices exacerbate nitrogen retention in Mediterranean catchments. Sci Total Environ 573:420–432

    Article  CAS  Google Scholar 

  • Sakawa M, Matsui T (2013) Interactive fuzzy random two-level linear programming based on level sets and fractile criterion optimization. Inf Sci 238:163–175

    Article  Google Scholar 

  • Singh AP, Ghosh SK, Sharma P (2007) Water quality management of a stretch of river Yamuna: an interactive fuzzy multi-objective approach. Water Resour Manag 21(2):515–532

    Article  Google Scholar 

  • Sivasakthivel T, Murugesan K, Thomas HR (2014) Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept. Appl Energy 116:76–85

    Article  Google Scholar 

  • State Environmental Protection Administration (1997-2014) Annual report on the impact of the Three Gorges Project on the ecology and environment China.

  • Tavakoli A, Nikoo MR, Kerachian R, Soltani M (2015) River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming. Environ Monit Assess 187:158

    Article  Google Scholar 

  • Üçler N, Engin GO, Köçken HG, Öncel MS (2015) Game theory and fuzzy programming approaches for bi-objective optimization of reservoir watershed management: a case study in Namazgah reservoir. Environ Sci Pollut Res 22(9):6546–6558

    Article  CAS  Google Scholar 

  • Wang S, Huang GH (2015) A multi-level Taguchi-factorial two-stage stochastic programming approach for characterization of parameter uncertainties and their interactions: an application to water resources management. Eur J Oper Res 240:572–581

    Article  Google Scholar 

  • Wang S, Huang GH, Baetz BW (2015a) An inexact probabilistic-possibilistic optimization framework for flood management in a hybrid uncertain environment. IEEE Trans Fuzzy Syst 23(4):897–908

    Article  Google Scholar 

  • Wang YC, Niu FX, Xiao SB, Liu DF, Chen WZ, Wang L, Yang ZJ, Ji DB, Li GY, Guo HC, Li Y (2015b) Phosphorus fractions and its summer’s release flux from sediment in the China’s Three Gorges reservoir. Journal of Environmental Informatics 25(1):36–45

    Article  CAS  Google Scholar 

  • Zarghami M (2010) Urban water management using fuzzy-probabilistic multi-objective programming with dynamic efficiency. Water Resour Manag 24(15):4491–4505

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research Development Program of China (2016YFC0502803 and 2016YFA0601502), and the 111 Project (B14008). The authors are grateful to the editors and the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Li.

Additional information

Responsible editor: Marcus Schulz

Appendices

Appendix A: Solution method

A robust two-step method is proposed to convert model (10) into two submodels that correspond to lower and upper bounds of the objective function value. Since the objective is to maximize the system benefit, the submodel corresponding to the upper bound of the objective function value (h +) should be first formulated. Submodel (2) corresponding to h is then formulated. In the first step, a set of submodels corresponding to h + can be reformulated as:

$$ \operatorname{Max}\ {h}^{+} $$
(22)

subject to:

$$ \frac{\sum_{j=1}^{k_1}\left({\lambda}_j^{+}-{\mu}_j^{+}\right){x}_j^{+}+\sum_{j={k}_1+1}^n\left({\lambda}_j^{+}-{\mu}_j^{+}\right){x}_j^{-}-{\Phi}^{-1}\left(1-\theta \right)\sqrt{\sum_{j=1}^{k_1}{\left({\sigma}_j^{+}{x}_j^{+}\right)}^2+\sum_{j={k}_1+1}^n{\left({\sigma}_j^{+}{x}_j^{-}\right)}^2}+{z}_0^{+}}{\sum_{j=1}^{k_1}{\lambda}_j^{+}{x}_j^{+}+\sum_{j=1}^n{\lambda}_j^{+}{x}_j^{-}-{z}_1^{+}+{z}_0^{+}}\ge {h}_{+} $$
(23)
$$ \sum_{j=1}^{j_1}\mid {a}_{i j}\mid {}^{-} Sign\left({a}_{i j}^{-}\right)\ {x}_j^{+}+\sum_{j={k}_1+1}^n\mid {a}_{i j}\mid {}^{+} Sign\left({a}_{i j}^{+}\right)\ {x}_j^{-}\le {b}_i{\left(\omega \right)}^{q_i},\kern0.5em i=1,2,\dots, m $$
(24)
$$ {x}_j^{+}\ge 0,\kern0.5em j=1,2,\dots, {k}_1 $$
(25)
$$ {x}_j^{-}\ge 0,\kern0.5em j={k}_1+1,{k}_1+2,\dots, n $$
(26)

where \( {x}_j^{+} \) (j = 1, 2, ..., k 1) are upper bounds of the decision variables (\( {x}_j^{\pm } \)) with positive coefficients in the objective function, and \( {x}_j^{-} \) (j = k 1 + 1, k 1 + 2, ..., n) are lower bounds with negative coefficients. Submodels corresponding to h can be formulated as:

$$ \operatorname{Max}\ {h}^{-} $$
(27)

subject to:

$$ \frac{\sum_{j=1}^{k_1}\left({\lambda}_j^{-}-{\mu}_j^{-}\right){x}_j^{-}+\sum_{j={k}_1+1}^n\left({\lambda}_j^{-}-{\mu}_j^{-}\right){x}_j^{+}-{\Phi}^{-1}\left(1-\theta \right)\sqrt{\sum_{j=1}^{k_1}{\left({\sigma}_j^{-}{x}_j^{-}\right)}^2+\sum_{j={k}_1+1}^n{\left({\sigma}_j^{-}{x}_j^{+}\right)}^2}+{z}_0^{-}}{\sum_{j=1}^{k_1}{\lambda}_j^{-}{x}_j^{-}+\sum_{j=1}^n{\lambda}_j^{-}{x}_j^{+}-{z}_1^{-}+{z}_0^{-}}\ge {h}^{-} $$
(28)
$$ \sum_{j=1}^{j_1}\mid {a}_{rj}\mid {}^{+} Sign\left({a}_{rj}^{+}\right)\ {x}_j^{-}+\sum_{j={k}_1+1}^n\mid {a}_{rj}\mid {}^{-} Sign\left({a}_{rj}^{-}\right)\ {x}_j^{+}\le {b}_i{\left(\omega \right)}^{q_i},\kern0.5em i=1,2,\dots, m $$
(29)
$$ 0\le {x}_j^{-}\le {x}_{j\ opt}^{+},\kern0.5em j=1,2,\dots, {k}_1 $$
(30)
$$ {x}_j^{+}\ge {x}_{j\ opt}^{-},\kern0.5em j={k}_1+1,{k}_2+1,\dots, n $$
(31)

where \( {x}_{\; j\kern0.37em opt}^{+} \) (j = 1, 2, ..., k 1) and \( {x}_{\; j\kern0.37em opt}^{-} \) (j = k 1 + 1, k 1 + 2, ..., n) are solutions corresponding to h . The model can be similarly solved when NM is adopted.

Appendix B: Nomenclatures and the RIPP model under NM

I :

chemical plant, 1 = Gufu (GF), 2 = Baishahe (BSH), 3 = Pingyikou (PYK), 4 = Liucaopo (LCP), 5 = Xiangjinlianying (XJLY)

J :

agricultural zone, and j = 1, 2, 3, 4

K :

main crop, 1 = citrus, 2 = tea, 3 = wheat, 4 = potato, 5 = rapeseed, 6 = alpine rice, 7 = second rice, 8 = maize, 9 = vegetables

P :

phosphorus mining company; 1 = Xinglong (XL), 2 = Xinghe (XH), 3 = Xingchang (XC), 4 = Geping (GP), 5 = Jiangjiawan (JJW), 6 = Shenjiashan (SJS)

r :

livestock, 1 = pig, 2 = ox, 3 = sheep, 4 = domestic fowls

s :

town, 1 = Gufu, 2 = Nanyang, 3 = Gaoyang, 4 = Xiakou

t :

planning time period, 1 = dry season, 2 = wet season

\( {\lambda}_{it}^{\pm } \) , \( {\mu}_{it}^{\pm } \) , \( {\sigma}_{it}^{\pm } \) :

mean value, expected value, and standard deviation of benefit from chemical plant (RMB¥/t)

\( {PLC}_{it}^{\pm } \) :

production level of chemical plant (t)

\( {\lambda}_{pt}^{\pm } \) , \( {\mu}_{pt}^{\pm } \) , \( {\sigma}_{pt}^{\pm } \) :

mean value, expected value, and standard deviation of benefit for phosphate ore (RMB¥/t)

\( {PLM}_{pt}^{\pm } \) :

production level of phosphorus mining company p during period t (t)

\( {\lambda}_{st}^{\pm } \) , \( {\mu}_{st}^{\pm } \) , \( {\sigma}_{st}^{\pm } \) :

mean value, expected value, and standard deviation of benefit from water supply (RMB¥/m3)

\( {QW}_{st}^{\pm } \) :

quantity of water supply (m3)

\( {CY}_{jkt}^{\pm } \) :

yield of crop (t/ha);

\( {\lambda}_{jkt}^{\pm } \) , \( {\mu}_{jkt}^{\pm } \) , \( {\sigma}_{jkt}^{\pm } \) :

mean value, expected value, and standard deviation of benefit for agricultural product (RMB¥/t)

\( {PA}_{jkt}^{\pm } \) :

planning area of crop k in agricultural zone j during period t (ha)

\( {\lambda}_r^{\pm } \) , \( {\mu}_r^{\pm } \) , \( {\sigma}_r^{\pm } \) :

mean value, expected value, and standard deviation of benefit from livestock (RMB¥/unit)

\( {NL}_r^{\pm } \) :

number of livestock r in the study area (unit)

\( \lambda {\hbox{'}}_{it}^{\pm } \) , \( \mu {\hbox{'}}_{it}^{\pm } \) , \( \sigma {\hbox{'}}_{it}^{\pm } \) :

mean value, expected value, and standard deviation of wastewater treatment cost of chemical plant (RMB¥/t)

\( \lambda {\hbox{'}}_{st}^{\pm } \) , \( \mu {\hbox{'}}_{st}^{\pm } \) , \( \sigma {\hbox{'}}_{st}^{\pm } \) :

mean value, expected value, and standard deviation of wastewater treatment cost at town (RMB¥/m3)

\( {\lambda}_{jt}^{\pm } \) , \( {\mu}_{jt}^{\pm } \) , \( {\sigma}_{jt}^{\pm } \) :

mean value, expected value, and standard deviation of cost for manure disposal (RMB¥/t)

\( \lambda {\hbox{'}}_{jt}^{\pm } \) , \( \mu {\hbox{'}}_{jt}^{\pm } \) , \( \sigma {\hbox{'}}_{jt}^{\pm } \) :

mean value, expected value, and standard deviation of cost for purchasing fertilizer (RMB¥/t)

\( {z}_0^{\pm } \) :

minimum total net benefit that decision makers want to obtain (RMB¥)

\( {z}_1^{\pm } \) :

maximum total net benefit that decision makers want to obtain (RMB¥)

\( {AM}_{jkt}^{\pm } \) :

amount of manure applied to agricultural zone (t)

\( {AF}_{jkt}^{\pm } \) :

amount of fertilizer applied to agricultural zone (t)

\( {TPC}_{st}^{\pm } \) :

capacity of wastewater treatment capacity (WTPs) (m3)

\( {TPD}_{it}^{\pm } \) :

capacity of wastewater treatment capacity (chemical plants) (m3)

\( {IC}_{it}^{\pm } \) :

BOD concentration of raw wastewater from chemical plant (kg/m3)

\( {\eta}_{BOD, it}^{\pm } \) :

BOD treatment efficiency in chemical plant (%)

\( {ABC}_{it}^{\pm } \) :

allowable BOD discharge for chemical plant (kg)

\( {BM}_{st}^{\pm } \) :

BOD concentration of municipal wastewater at town (kg/m3)

\( \eta {\hbox{'}}_{BOD, st}^{\pm } \) :

BOD treatment efficiency of WTPs at town (%)

\( {ABW}_{st}^{q_i} \) :

allowable BOD discharge for WTPs at town (kg)

\( {AML}_{rt}^{\pm } \) :

amount of manure generated by livestock [t/ unit]

\( {AMH}_t^{\pm } \) :

amount of manure generated by humans [t/ unit]

\( {RP}_t^{\pm } \) :

total rural population in the study area during period t (unit)

\( {MS}_t^{\pm } \) :

manure loss rate in period t (%)

\( {\varepsilon}_{NM}^{\pm } \) :

nitrogen content of manure (%)

\( {ACW}_t^{\pm } \) :

wastewater generation of per capita water consumption during period t (m3/ unit)

\( {DNR}_t^{\pm } \) :

dissolved nitrogen concentration of rural wastewater during period t (t/m3)

\( {ANL}_t^{q_i} \) :

maximum allowable nitrogen loss from rural life section in period t (t)

\( {NS}_{jk}^{\pm } \) :

nitrogen content of soil in agricultural zone (%)

\( {SL}_{jkt}^{\pm } \) :

average soil loss from agricultural zone (t/ha)

\( {RF}_{jkt}^{\pm } \) :

runoff from agricultural zone (mm)

\( {DN}_{jkt}^{\pm } \) :

dissolved nitrogen concentration in runoff from agricultural zone (mg/L)

\( {MNL}_{jt}^{\pm } \) :

maximum allowable nitrogen loss in agricultural zone j during period t (t/ha)

\( {TA}_{jt}^{\pm } \) :

tillable area of agricultural zone (ha)

\( {PCR}_{it}^{\pm } \) :

phosphorus concentration of raw wastewater from chemical plant (kg/m3)

\( {\eta}_{TP, it}^{\pm } \) :

phosphorus treatment efficiency in chemical plant (%)

\( {ASC}_{it}^{\pm } \) :

amount of slag discharged by chemical plant (kg/t)

\( {SLR}_{it}^{\pm } \) :

slag loss rate due to rain wash in chemical plant (%)

\( {PSC}_{it}^{\pm } \) :

phosphorus content in slag generated by chemical plant (%)

\( {APC}_{i t}^{q_i} \) :

allowable phosphorus discharge for chemical plant (kg)

\( {\varepsilon}_{PM}^{\pm } \) :

phosphorus content of manure (%)

\( {DPR}_t^{\pm } \) :

dissolved phosphorus concentration of rural wastewater (t/m3)

\( {APL}_t^{\pm } \) :

maximum allowable phosphorus loss from rural life during period t (t)

\( {PCM}_{st}^{\pm } \) :

phosphorus concentration of municipal wastewater at town (kg/m3)

\( {\eta}_{TP, st}^{\pm } \) :

phosphorus treatment efficiency of WTP at town (%)

\( {APW}_{st}^{\pm } \) :

allowable phosphorus discharge for WTP at town (kg)

\( {WPM}_{pt}^{\pm } \) :

wastewater generation from phosphorus mining company (m3/t)

\( {MWC}_{pt}^{\pm } \) :

phosphorus concentration of wastewater from mining company (kg/ m3)

\( {\eta}_{TP, pt}^{\pm } \) :

phosphorus treatment efficiency in mining company (%)

\( {ASM}_{pt}^{\pm } \) :

amount of slag discharged by mining company (kg/t)

\( {PCS}_{pt}^{\pm } \) :

phosphorus content in generated slag (%)

\( {SLW}_{pt}^{\pm } \) :

slag loss rate due to rain wash (%)

\( {APM}_{pt}^{q_i} \) :

allowable phosphorus discharge for mining company (kg)

\( {PS}_{jk}^{\pm } \) :

phosphorus content of soil in agricultural zone (%)

\( {SL}_{jkt}^{\pm } \) :

average soil loss from agricultural zone (t/ha)

\( {DP}_{jkt}^{\pm } \) :

dissolved phosphorus concentration in runoff from agricultural zone (mg/L)

\( {MPL}_{jt}^{\pm } \) :

maximum allowable phosphorus loss in agricultural zone (t/ha)

\( {MSL}_{jt}^{\pm } \) :

maximum allowable soil loss agricultural zone (t/ha)

\( {NVF}_t^{\pm } \) :

nitrogen volatilization/denitrification rate of fertilizer (%)

\( {NVM}_t^{\pm } \) :

nitrogen volatilization/denitrification rate of manure (%)

\( {\varepsilon}_{NF}^{\pm } \) :

nitrogen content of fertilizer (%)

\( {\varepsilon}_{PF}^{\pm } \) :

phosphorus content of fertilizer (%)

\( {\varepsilon}_{NM}^{\pm } \) :

nitrogen content of manure (%)

\( {\varepsilon}_{PM}^{\pm } \) :

phosphorus content of manure (%)

\( {NR}_{jkt}^{\pm } \) :

nitrogen requirement of agricultural zone (t/ha)

\( {PR}_{jkt}^{\pm } \) :

phosphorus requirement of crop k in agricultural zone (t/ha)

\( {TAH}_{jt}^{\pm } \) :

dry farmland of agricultural zone (ha)

\( {TAS}_{jt}^{\pm } \) :

paddy farmland of agricultural zone (ha)

\( {MFP}_t^{\pm } \) :

the government requirement for minimum area of farmland (ha);

\( {PLC}_{it, \min}^{\pm } \) :

minimum production level of chemical plant (t/day)

\( {PLC}_{it, \max}^{\pm } \) :

maximum production level of chemical plant (t/day)

\( {NL}_{r, \min}^{\pm } \) :

minimum number of livestock (unit)

\( {NL}_{r, \max}^{\pm } \) :

maximum number of livestock (unit)

\( {QW}_{st, \min}^{\pm } \) :

minimum quantity of water supply to town (m3/day)

\( {QW}_{st, \max}^{\pm } \) :

maximum quantity of water supply to town (m3/day)

\( {PLM}_{pt, \min}^{\pm } \) :

minimum production level of phosphorus mining company (t/day)

\( {PLM}_{pt, \max}^{\pm } \) :

maximum production level of phosphorus mining company (t/day)

The RIPP model under NM for supporting support water quality management in the Xiangxihe watershed can be represented as follows:

$$ \operatorname{Max}\kern0.5em {h}^{\pm } $$
(32)

subject to:

  1. (1)

    Risk inference of decision maker:

$$ \frac{\begin{array}{c}\Big\{\sum_{i=1}^5\sum_{t=1}^2\left[{\mu}_{i t}^{\hbox{'}\pm }-{\mu}_{i t}^{\pm}\right]{PLC}_{i t}^{\pm }-\sum_{p=1}^6\sum_{t=1}^2{\mu}_{p t}^{\pm }{PLM}_{p t}^{\pm}\\ {}+\sum_{s=1}^4\sum_{t=1}^2\left[{\mu}_{s t}^{\hbox{'}\pm }-{\mu}_{s t}^{\pm}\right]{QW}_{s t}^{\pm }-\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\mu}_{j kt}^{\pm }{CY}_{j kt}^{\pm }{PA}_{j kt}^{\pm}\\ {}+\sum_{r=1}^4{\mu}_r^{\pm }{NL}_r^{\pm }+\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\mu}_{j t}^{\pm }{AM}_{j kt}^{\pm }+\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\mu}_{j t}^{\hbox{'}\pm }{AF}_{j kt}^{\pm}\Big\}\\ {}-{\Phi}^{-1}\left(1-\theta \right)\sqrt{\begin{array}{l}\sum_{i=1}^5\sum_{t=1}^2\left[{\left({\sigma}_{i t}^{\pm }{PLC}_{i t}^{\pm}\right)}^2-{\left({\sigma}_{i t}^{\hbox{'}\pm }{PLC}_{i t}^{\pm}\right)}^2\right]+\sum_{p=1}^6\sum_{t=1}^2{\left({\sigma}_{p t}^{\pm }{PLM}_{p t}^{\pm}\right)}^2\\ {}+\sum_{s=1}^4\sum_{t=1}^2\left[{\left({\sigma}_{s t}^{\pm }{QW}_{s t}^{\pm}\right)}^2-{\left({\sigma}_{s t}^{\hbox{'}\pm }{QW}_{s t}^{\pm}\right)}^2\right]+\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\left({\sigma}_{j kt}^{\pm }{CY}_{j kt}^{\pm }{PA}_{j kt}^{\pm}\right)}^2\\ {}+\sum_{r=1}^4{\left({\sigma}_r^{\pm }{NL}_r^{\pm}\right)}^2-\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\left({\sigma}_{j t}^{\pm }{AM}_{j kt}^{\pm}\right)}^2-\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\left({\sigma}_{j t}^{\hbox{'}\pm }{AF}_{j kt}^{\pm}\right)}^2\end{array}}+{z}_0^{\pm}\end{array}}{\begin{array}{c}\sum_{i=1}^5\sum_{t=1}^2\left({\gamma}_{i t}^{\pm }-{\gamma}_{i t}^{\hbox{'}\pm}\right){PLC}_{i t}^{\pm }+\sum_{p=1}^6\sum_{t=1}^2{\gamma}_{p t}^{\pm }{PLM}_{p t}^{\pm }+\sum_{s=1}^4\sum_{t=1}^2\left({\gamma}_{s t}^{\pm }-{\gamma}_{s t}^{\hbox{'}\pm}\right){QW}_{s t}^{\pm }+\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\gamma}_{j kt}^{\pm }{CY}_{j kt}^{\pm }{PA}_{j kt}^{\pm}\\ {}+\sum_{r=1}^4{\gamma}_r^{\pm }{NL}_r^{\pm }-\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\gamma}_{j t}^{\pm }{AM}_{j kt}^{\pm }-\sum_{j=1}^4\sum_{k=1}^9\sum_{t=1}^2{\gamma}_{j t}^{\hbox{'}\pm }{AF}_{j kt}^{\pm }-{z}_1^{\pm }+{z}_0^{\pm}\end{array}}\ge {h}^{\pm } $$
(33)
  1. (2)

    Constraints of water supply:

$$ {QW}_{st}^{\pm}\cdot {GT}_{st}^{\pm}\le {TPC}_{st}^{\pm },\kern0.5em \forall s, t $$
(34)
$$ {QW}_{st}^{\pm}\cdot {GT}_{st}^{\pm}\cdot {BM}_{st}^{\pm}\cdot \left(1-{\eta}_{BOD, st}^{\pm}\right)\le {ABW}_{st}^{q_i},\kern0.5em \forall s, t $$
(35)
$$ {QW}_{st}^{\pm}\cdot {GT}_{st}^{\pm}\cdot {PCM}_{st}^{\pm}\left(1-{\eta}_{TP, st}^{\pm}\right)\le {APW}_{st}^{\pm },\forall s,\kern0.5em t $$
(36)
$$ {QW}_{st, \min}\le {QW}_{st}^{\pm}\le {QW}_{st, \max },\kern0.5em \forall s, t $$
(37)
  1. (3)

    Constraints of chemical plant production:

$$ {PLC}_{it}^{\pm}\cdot {WC}_{it}^{\pm}\le {TPD}_{it}^{\pm },\kern0.5em \forall i, t $$
(38)
$$ {PLC}_{it}^{\pm}\cdot {WC}_{it}^{\pm}\cdot {IC}_{it}^{\pm}\cdot \left(1-{\eta}_{BOD, it}^{\pm}\right)\le {ABC}_{it}^{\pm },\kern0.5em \forall i, t $$
(39)
$$ {PLC}_{i t}^{\pm}\cdot \left[{WC}_{i t}^{\pm}\cdot {PCR}_{i t}^{\pm}\left(1-{\eta}_{TP, it}^{\pm}\right)+{ASC}_{i t}^{\pm}\cdot {SLR}_{i t}^{\pm}\cdot {PSC}_{i t}^{\pm}\right]\le {APC}_{i t}^{q_i},\kern0.5em \forall i, t $$
(40)
$$ {PLC}_{it, \min}\le {PLC}_{it}^{\pm}\le {PLC}_{it, \max },\kern0.5em \forall i, t $$
(41)
  1. (4)

    Constraints of phosphorus mining company production:

$$ {PLM}_{pt}^{\pm}\cdot \left[{WPM}_{pt}^{\pm}\cdot {MWC}_{pt}^{\pm}\left(1-{\eta}_{TP, pt}^{\pm}\right)+{ASM}_{pt}^{\pm}\cdot {PCS}_{pt}^{\pm}\cdot {SLW}_{pt}^{\pm}\right]\le {APM}_{pt}^{q_i},\kern0.5em \forall p, t $$
(42)
$$ {PLM}_{pt, \min}\le {PLM}_{pt}^{\pm}\le {PLM}_{pt, \max },\kern0.5em \forall p, t $$
(43)
  1. (5)

    Constraints of crop farming:

$$ \sum_{k=1}^9\left({NS}_{jk}^{\pm}\cdot {SL}_{jk t}^{\pm }+{RF}_{jk t}^{\pm}\cdot {DN}_{jk t}^{\pm}\cdot {10}^{-5}\right)\cdot {PA}_{jk t}^{\pm}\le {MNL}_{jt}^{\pm}\cdot {TA}_{jt}^{\pm },\kern0.5em \forall j, t $$
(44)
$$ \sum_{k=1}^9\left({PS}_{jk}^{\pm}\cdot {SL}_{jk t}^{\pm }+{DP}_{jk t}^{\pm}\cdot {RF}_{jk t}^{\pm}\cdot {10}^{-5}\right){PA}_{jk t}^{\pm}\le {MPL}_{jt}^{\pm}\cdot {TA}_{jt}^{\pm },\forall j, t $$
(55)
$$ \sum_{k=1}^9{SL}_{jkt}^{\pm}\cdot {PAQ}_{jkt}^{\pm}\le {MSL}_{jt}^{\pm}\cdot {TA}_{jt}^{\pm },\forall j, t $$
(56)
$$ \left(1-{NVF}_t^{\pm}\right)\cdot {\varepsilon}_{NF}^{\pm}\cdot {AF}_{jkt}^{\pm }+\left(1-{NVM}_t^{\pm}\right)\cdot {\varepsilon}_{NM}^{\pm}\cdot {AM}_{jkt}^{\pm}\ge {NR}_{jkt}^{\pm}\cdot {PA}_{jkt}^{\pm },\kern0.5em \forall j, k, t $$
(57)
$$ {\varepsilon}_{PF}^{\pm}\cdot {AF}_{jkt}^{\pm }+{\varepsilon}_{PM}^{\pm}\cdot {AM}_{jkt}^{\pm}\ge {PR}_{jkt}^{\pm}\cdot {PA}_{jkt}^{\pm },\kern0.5em \forall j, k, t $$
(58)
$$ \sum_{k=1}^9\left({\varepsilon}_{NF}^{\pm}\cdot {AF}_{jkt}^{\pm }+{\varepsilon}_{NM}^{\pm}\cdot {AM}_{jkt}^{\pm }-{NR}_{jkt}^{\pm}\cdot {PA}_{jkt}^{\pm}\right)\le {MNL}_{jt}^{\pm}\cdot {TA}_{jt}^{\pm },\kern0.5em \forall j, t $$
(59)
$$ \sum_{k=1}^9\left({\varepsilon}_{PF}^{\pm}\cdot {AF}_{jkt}^{\pm }+{\varepsilon}_{PM}^{\pm}\cdot {AM}_{jkt}^{\pm }-{PR}_{jkt}^{\pm}\cdot {PA}_{jkt}^{\pm}\right)\le {MPL}_{jt}^{\pm}\cdot {TA}_{jt}^{\pm },\kern0.5em \forall j, t $$
(60)
$$ \sum_{j=1}^4\sum_{k=1}^6{PA}_{j kt}^{\pm}\ge {MFP}_t^{\pm },\kern0.5em t=1 $$
(61)
$$ \sum_{j=1}^4\sum_{k=1}^2{PA}_{j kt}^{\pm }+\sum_{j=1}^4\sum_{k=8}^9{PA}_{j kt}^{\pm}\ge {MFP}_t^{\pm },\kern0.5em t=2 $$
(62)
$$ {PA}_{jkt}^{\pm}\le {TAS}_{jt}^{\pm },\kern0.5em k=6, t=1 $$
(63)
$$ \sum_{k=1}^5{PA}_{jkt}^{\pm}\le {TAH}_{jt}^{\pm },\kern0.5em t=1 $$
(64)
$$ {PA}_{jkt}^{\pm}\le {TAS}_{jt}^{\pm },\kern0.5em k=7, t=2 $$
(65)
$$ \sum_{k=1}^2{PA}_{jkt}^{\pm }+\sum_{k=8}^9{PA}_{jkt}^{\pm}\le {TAH}_{jt}^{\pm },\kern0.5em t=2 $$
(66)
$$ { TA S}_{jt}^{\pm }+{ TA H}_{jt}^{\pm }={TA}_{jt}^{\pm },\kern0.5em \forall j, t $$
(67)
  1. (6)

    Constraints of livestock husbandry:

$$ \begin{array}{l}\left(\sum_{r=1}^4{ AM L}_{r t}^{\pm}\cdot {NL}_r^{\pm }+{ AM H}_t^{\pm}\cdot {RP}_t^{\pm }-\sum_{j=1}^4\sum_{k=1}^9{AM}_{j kt}^{\pm}\right)\cdot {MS}_t^{\pm}\cdot {\varepsilon}_{NM}^{\pm}\\ {}+{RP}_t^{\pm}\cdot {ACW}_t^{\pm}\cdot {DNR}_t^{\pm}\le {ANL}_t^{q_i},\kern0.5em \forall t\end{array} $$
(68)
$$ \sum_{r=1}^4{ AM L}_{r t}^{\pm}\cdot {NL}_r^{\pm }+{ AM H}_t^{\pm}\cdot {RP}_t^{\pm}\ge \sum_{j=1}^4\sum_{k=1}^9{AM}_{j kt}^{\pm },\kern0.5em \forall t $$
(69)
$$ {NL}_{r, \min}\le {NL}_r^{\pm}\le {NL}_{r, \max },\kern0.5em \forall r $$
(70)
  1. (7)

    Non-negative constraints:

$$ {PLC}_{it}^{\pm },\kern0.5em {PA}_{jkt}^{\pm },\kern0.5em {NL}_r^{\pm },\kern0.5em {QW}_{st}^{\pm },\kern0.5em {PLM}_{pt}^{\pm },\kern0.5em {AM}_{jkt}^{\pm },\kern0.5em {AF}_{jkt}^{\pm}\ge 0 $$
(71)

Solutions for the MRPP model under a given risk level can be obtained through integration of solutions of the lower and upper submodels. A set of interval solutions associated with possiblistic and probabilistic information for the objective and decision variables can be obtained by solving the submodels under the other risk levels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Li, Y., Huang, G. et al. Identification of water quality management policy of watershed system with multiple uncertain interactions using a multi-level-factorial risk-inference-based possibilistic-probabilistic programming approach. Environ Sci Pollut Res 24, 14980–15000 (2017). https://doi.org/10.1007/s11356-017-9106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9106-2

Keywords

Navigation