Skip to main content

Advertisement

Log in

Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 20 June 2017

Abstract

Nicotine is a “life-style compound” widely consumed by human populations and, consequently, often found in surface waters. This fact presents a concern for possible effects in the aquatic ecosystems. The objective of this study was to assess the potential lethal and sublethal toxicity of nicotine in aquatic organisms from different trophic levels (Vibrio fischeri, Pseudokirchneriella subcapitata, Thamnocephalus platyurus, and Daphnia magna). The bioassays were performed by exposing the organisms to concentrations of nicotine in a range of 0.5–1000 μg/L. Results showed that nicotine, at tested concentration, was not acutely toxic to V. fischeri and T. platyurus. On the contrary, this substance exhibited toxicity to P. subcapitata and Daphnia magna. Thus, concentrations of nicotine of 100 and 200 μg/L promoted an inhibition in the growth of P. subcapitata. In addition, a concentration of 100 μg/L nicotine acted on the reproduction of the crustacean D. magna, by decreasing the number of juveniles produced by female. On the other hand, the results showed that concentrations equal to or greater than 10 μg/L induced the production of daphnids male offspring, which may indicate that nicotine is a weak juvenoid compound of the D. magna endocrine system. Furthermore, the result showed that concentrations tested of this chemical have the capacity to revert the effect of fenoxycarb, a strong juvenoid chemical insecticide. The results of the study revealed that nicotine can induce several changes in some of the most important key groups of the aquatic compartment, which can compromise, in a short time, the balance of aquatic ecosystem. Finally, a preliminary environmental risk assessment of this stimulant was performed from the highest measured concentration in surface water and the no observable effect concentration value in the most sensitive species, i.e., D. magna. This process revealed that nicotine can produce an important risk to aquatic organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:409–422

    Article  CAS  Google Scholar 

  • ASTM (American Society of Testing Materials) (1998) Standard practice for conducting toxicity tests with fishes, microinvertebrates and amphibians. E729–90. In: annual book of ASTM standards. American Society of Testing Materials, Philadelphia, pp 271–296

    Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares AMVM (1989) The Daphnia bioassay: a critique. Hydrobiologia 188–189:403–406.

  • Benowitz NL (1998) Nicotine safety and toxicity. Oxford University Press, New York, p 203

    Google Scholar 

  • Blaise C, Forget G, Trottier S (2000) Toxicity screening of aqueous samples using a cost-effective 72-h exposure Selenastrum capricornutum assay. J Environ Toxicol 15:352–359

    Article  CAS  Google Scholar 

  • Buerge IJ, Kahle M, Buser HR, Muller MD, Poiger T (2008) Nicotine derivatives in wastewater and surface waters: application as chemical markers for domestic wastewater. Environ Sci Technol 42(17):6354–6360

    Article  CAS  Google Scholar 

  • Darsana R, Chandrasehar G, Deepa V, Gowthami Y, Chitrikha T, Ayyappan S, Goparaju A (2015) Acute toxicity assessment of reactive red 120 to certain aquatic organisms. Bull Environ Contam Toxicol 95:582–587

    Article  CAS  Google Scholar 

  • DellaGreca M, Fiorentino A, Isidori M, Lavorgna M, Previtera L, Rubino M, Temussi F (2004) Toxicity of prednisolone, dexamethasone and their photochemical derivates on aquatic organisms. Chemosphere 54:629–637

    Article  CAS  Google Scholar 

  • Edsall CC (1991) Acute toxicities to larval rainbow trout of representative compounds detected in Great Lakes fish. Bull Environ Contam Toxicol 46(2):173–178

    Article  CAS  Google Scholar 

  • Elbert A, Haas M, Springer B, Thielert W, Nauen R (2008) Mini-review: applied aspects of neonicotinoid uses in crop protection. Pest Manag Sci 64:1099–1105

    Article  CAS  Google Scholar 

  • Finney DJ (1971) Probit Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansch C, Leo A, Hoekman D (1995) Exploring QSAR - hydrophobic, electronic, and steric constants. American Chemical Society, Washington, p 76

    Google Scholar 

  • Hayasaka D, Korenaga T, Suzuki K, Sanchez-Bayo F, Goka K (2012) Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21:421–427

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio Fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71:1308–1316

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Galceran MT, Ventura F (2008b) Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environ Sci Technol 42(18):6809–6816

    Article  CAS  Google Scholar 

  • Huerta-Fontela M, Galceran MT, Martin-Alonso J, Ventura F (2008a) Occurrence of psychoactive stimulatory drugs in wastewaters in north-eastern Spain. Sci Total Environ 397:31–40

    Article  CAS  Google Scholar 

  • International Organization for Standardisation (ISO) 6468 (1996) Water quality – Determination of certain organochlorine insecticides, polychlorinated biphenyls and chlorobenzenes – Gas chromatographic method after liquid-liquid extraction. International Organization for Standardisation, Geneve

  • International Organization for Standardisation (ISO) 11348-2 (1998) International standard for water quality: determination of inhibitory effect of water samples on the light emission of Vibrio fischeri (luminescent bacteria test). Part 3: method using freeze-dried bacteria. International Organization for Standardisation, Geneve

    Google Scholar 

  • International Organization for Standardisation (ISO) / DIS 8692 (2002) International standard for water quality: fresh water algal growth inhibition test with unicellular green algae. International Organization for Standardisation, Geneve

    Google Scholar 

  • Jemec A, Tišler T, Drobne D, Sepčić K, Fournier D, Trebše P (2007) Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazion to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68:1408–1418

    Article  CAS  Google Scholar 

  • Klaassen CD, Watkins JB (2005) Fundamentos de Toxicología. Casarett and Doull. McGraw-Hill, Madrid

    Google Scholar 

  • Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Environ 407:4610–4615

    Article  CAS  Google Scholar 

  • LeBlanc GA (2003) Endocrine toxicology. In: Hodgson E (ed) Modern toxicology. Appleton & Lange, Stamford

    Google Scholar 

  • Li H, Dong Z, Weng Q, Chang CC, Liu B (2015) Emerging pollutants—part I: occurrence, fate and transport. Water Environ Res 87(10):1849–1872

    Article  CAS  Google Scholar 

  • Malev O, Sauerborn Klobučar R, Fabbretti E, Trebše P (2012) Comparative toxicity of imidacloprid and its transformation product 6-chloronicotinic acid to non-target aquatic organisms: microalgae Desmodesmus subspicatus and amphipod Gammarus fossarum. Pest Biochem Physiol 104:178–186

    Article  CAS  Google Scholar 

  • Martinez Bueno MJ, Hernando MD, Herrera S, Gomez MJ, Fernandez-Alba AR, Bustamante I, Garcia-Calvo E (2010) Pilot survey of chemical contaminants from industrial and human activities in river waters of Spain. Intern J Environ Anal Chem 90(3–6):321–343

    Article  Google Scholar 

  • Martinez Bueno MJ, Ucles S, Hernando MD, Davoli E, Fernandez-Alba AR (2011) Evaluation of selected ubiquitous contaminants in the aquatic environment and their transformation products. A pilot study of their removal from a sewage treatment plant. Water Res 45:2331–2341

    Article  CAS  Google Scholar 

  • Micevska T, Warne MSJ, Pablo F, Patra R (2006) Variation in, and causes of, toxicity of cigarette butts to a cladoceran and Microtox. Arch Environ Contam Toxicol 50:205–212

    Article  CAS  Google Scholar 

  • Nichols HW (1973) Growth media-freshwater. In: Stein JR (ed) Handbook of phycological methods, vol 4. Cambridge University Press, Cambridge, pp 7–24

    Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2005) Production of male neonates in Daphnia magna (Cladocera, Crustacea) exposed to juvenile hormones and their analogs. Chemosphere 61:1168–1174

    Article  CAS  Google Scholar 

  • Oda S, Tatarazako N, Watanabe H, Morita M, Iguchi T (2006) Genetic differences in the production of male neonates in Daphnia magna exposed to juvenile hormone analogs. Chemosphere 63:1477–1484

    Article  CAS  Google Scholar 

  • OECD (Organization for Economic Cooperation and Development) (2002) Freshwater alga and cyanobacteria, growth inhibition test. In: OECD Guidelines for Testing of Chemicals N° 201. Organization for Economic Cooperation and Development, Paris

  • OECD (Organization for Economic Cooperation and Development) (2004) Daphnia sp., Acute Immobilization Test. In: OECD Guidelines for Testing of Chemicals N° 202. Organization for Economic Cooperation and Development, Paris

  • OECD (Organization for Economic Cooperation and Development) (2012) Daphnia magna, Reproduction Test. In: OECD Guidelines for Testing of Chemicals N° 211. Organization for Economic Cooperation and Development, Paris

  • Olmstead AW, LeBlanc GA (2002) Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. J Exp Zool 293:736–739

    Article  CAS  Google Scholar 

  • Olmstead AW, LeBlanc GA (2003) Insecticidal juvenile hormone analogs stimulate the production of male offspring in the crustacean Daphnia magna. Environ Health Perspect 111:919–924

    Article  CAS  Google Scholar 

  • Oropesa AL, Floro AM, Palma P (2016) Assessment of the effects of the carbamazepine on the endogenous endocrine system of Daphnia magna. Environ Sci Pollut Res 23(17):17311–17321

    Article  CAS  Google Scholar 

  • Palma P, Palma VL, Fernandes RM, Soares AMVM, Barbosa IR (2008) Acute toxicity of atrazine, endosulfan sulphate and chlorpyrifos to Vibrio fischeri, Thamnocephalus platyurus and Daphnia magna, relative to their concentrations in surface waters from the Alentejo region of Portugal. Bull Environ Contam Toxicol 81:485–489

    Article  CAS  Google Scholar 

  • Palma PADB (2009) Avaliação da actividade juvenóide no sistema endócrino do crustáceo Daphnia magna, dos pesticidas atrazina, endossulfão sulfato e clorpirifos. Dissertação apresentada para obtenção do Grau de Doutor em Farmácia, Especialidade Toxicologia, Coimbra (in Português)

  • Palma P, Palma VL, Matos C, Fernandes RM, Bohn A, Soares AMVM, Barbosa IR (2009) Assessment of the pesticides atrazine, endosulfan sulphate and chlorpyrifos for juvenoid-related endocrine activity using Daphnia magna. Chemosphere 76:335–340

    Article  CAS  Google Scholar 

  • Passino-Reader DR, Berlin WH, Hickey JP (1995) Chronic bioassays of rainbow trout fry with compounds representative of contaminants in Great Lakes fish. J Great Lakes Res 21(3):373–383

    Article  CAS  Google Scholar 

  • Pavlaki MD, Pereira R, Loureiro S, Soares AMVM (2011) Effects of binary mixtures on the life traits of Daphnia magna. Ecotox Environ Safe 74:99–110

    Article  CAS  Google Scholar 

  • Perry CM, Smith SB (1988) Toxicological effects of six heterocyclic nitrogen compounds to Daphnia pulex. Bull Environ Contam Toxicol 41(4):604–608

    Article  CAS  Google Scholar 

  • Persoone G (1999) THAMNOTOXKIT FTM—crustacean toxicity screening test for freshwater. Standard Operational Procedure, Belgium, pp 3–21

    Google Scholar 

  • Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A (2014) Monitoring of selected priority and emerging contaminants in the Guadalquivir river and other related surface waters in the province of Jaén, south east Spain. Sci Total Environ 479–480:247–257

  • Sanchez-Fortun S, Barahona MV (2005) Comparative study on the environmental risk induced by several pyrethroids in estuarine and freshwater invertebrate organisms. Chemosphere 59:553–559

    Article  CAS  Google Scholar 

  • Savino JF, Tanabe LL (1989) Sublethal effects of phenanthrene, nicotine, and pinane on Daphnia pulex. Bull Environ Contam Toxicol 42:778–784

    Article  CAS  Google Scholar 

  • Schiechl G, Himmelsbach M, Buchberger W, Kerschbaum HH, Lütz-Meindl U (2008) Identification of acetylcholine and impact of cholinomimetic drugs on cell differentiation and growth in the unicellular green alga Micrasterias denticulata. Plant Sci 175:262–266

    Article  CAS  Google Scholar 

  • Seckar JA, Stavanja MS, Harp PR, Yi Y, Garner CD, Doi J (2008) Environmental fate and effects of nicotine released during cigarette production. Environ Toxicol Chem 27(7):1505–1514

    Article  CAS  Google Scholar 

  • Seidell A. (1941) Solubilities of organic compounds. NY: d Van Norstrand Co., Inc

  • Senta I, Gracia-Lor E, Borsotti A, Zuccato E, Castiglioni S (2015) Wastewater analysis to monitor use of caffeine and nicotine and evaluation of their metabolites as biomarkers for population size assessment. Water Res 74:23–33

    Article  CAS  Google Scholar 

  • Slaughter E, Gersberg RM, Watanabe K, Rudolph J, Stransky C, Novotny TE (2011) Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob Control 20(1):25–29

    Article  Google Scholar 

  • Stuart M, Lapworth D, Crane E, Hart A (2012) Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ 416:1–21

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S, Watanabe H, Morita M, Iguchi T (2003) Juvenile hormone agonists affect the occurrence of male Daphnia. Chemosphere 53:827–833

    Article  CAS  Google Scholar 

  • Tatarazako N, Oda S (2007) The water flea Daphnia magna (Crustacea, Cladocera) as a test species for screening and evaluation of chemicals with endocrine disrupting effects on crustaceans. Ecotoxicology 16:197–203

    Article  CAS  Google Scholar 

  • Technical Guidance Document (2003) Technical Guidance Document in support of the commission directive 93/67/CEE on risk assessment of new notified substances and the commission regulation (EC) 1488/94 on risk assessment for existing substances. European Chemical Bureau, Ispra, p 101

    Google Scholar 

  • Tišler T, Jemec A, Mozetič B, Trebše P (2009) Hazard identification of imidacloprid to aquatic environment. Chemosphere 76:907–914

    Article  Google Scholar 

  • Tomlin CDS (2005) The e-Pesticide Manual, 13th ed., version 3.2. The British Crop Protection Council, Hampshire

  • Valcarcel Y, Gonzalez AS, Rodriguez-Gil JL, Gil A, Catala M (2011) Detection of pharmaceutically active compounds in the rivers and tap water of the Madrid region (Spain) and potential ecotoxicological risk. Chemosphere 84(10):1336–1348

    Article  CAS  Google Scholar 

  • van Wel JHP, Gracia-Lor E, van Nuijs ALN, Kinyua J, Salvatore S, Castiglioni S, Bramness JG, Covaci A, Van Hal G (2016) Investigation of agreement between wastewater-based epidemiology and survey data on alcohol and nicotine use in a community. Drug Alcohol Depend 162:170–175

    Article  Google Scholar 

  • US EPA (2009) Estimation Program Interface (EPI) Suite. Ver. 4.0. Available from, as of Mar 2, 2009:http://www.epa.gov/oppt/exposure/pubs/episuitedl.htm

  • Wang HY, Olmstead AW, Li H, LeBlanc GA (2005) The screening of chemicals for juvenoid-related endocrine activity using the water flea Daphnia magna. Aquat Toxicol 74:193–204

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2013) Report on global tobacco epidemic. World Health Organization, Geneve

    Google Scholar 

  • Zar JH (1996) Biostatistical analysis. Prentice Hall International Editions, New Jersey

    Google Scholar 

Download references

Acknowledgements

We are grateful to P Nozes (Laboratório de Biologia, Escola Superior Agrária de Beja, Portugal). Authors also wish to thank the financial support given to A.L. Oropesa by Ministerio de Educación, Cultura y Deporte en el marco del Programa Estatal de Promoción del Talento y su Empleabilidad en I + D + i, Subprograma Estatal de Movilidad, del Plan Estatal de Investigación Científica y Técnica y de Innovación 2013–2016 through a post-doctoral research grant (CAS15-00049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Lourdes Oropesa.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Responsible editor: Cinta Porte

The name of the 1st Author should be Ana Lourdes Oropesa.

An erratum to this article is available at http://dx.doi.org/10.1007/s11356-017-9332-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oropesa, A.L., Floro, A.M. & Palma, P. Toxic potential of the emerging contaminant nicotine to the aquatic ecosystem. Environ Sci Pollut Res 24, 16605–16616 (2017). https://doi.org/10.1007/s11356-017-9084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9084-4

Keywords

Navigation