Skip to main content

Advertisement

Log in

Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biosynthesis of nanoparticles has received increasing attention due its effective mode of action, eco-friendly preparation methodology, and less cytotoxicity. In the present study, silver nanoparticles (AgNPs) from aqueous seed extract of Myristica fragrans (nutmeg) were characterized. Gas chromatography–mass spectrometry (GC–MS) analysis revealed the presence of bioactive components acts as effective in reducing and capping agents for converting AgNO3 to AgNPs. The UV-Vis absorption spectrum of the biologically reduced reaction mixture showed the surface plasmon peak at 420 nm, which is the characteristic peak of AgNPs. The functional molecules present in the M. fragrans seed extract and their interaction with the AgNPs were identified by the Fourier transform infrared spectroscopy (FT-IR) analysis. X-ray diffraction (XRD) analysis confirmed the face-centered cubic crystalline structure of metallic silver nanoparticle and diameter was calculated using Scherrer’s equation. Transmission electron microscope (TEM) image showed spherical shaped particles with an average size of 25 nm. The scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) confirmed the presence of elemental silver. The antibacterial activity of biosynthesized AgNPs was evaluated against multidrug-resistant (MDR) Salmonella enterica serovar Typhi (S. Typhi) according to agar well diffusion, MIC (minimum inhibitory concentration), and IC50 (inhibitory concentration 50%). The results confirm that bacterial growth was significantly reduced in a dose-dependent manner. Further, the cytotoxic effect of biosynthesized AgNPs on rat spleenocytes was analyzed. Thus, it is suggested that the nutmeg-biosynthesized AgNPs could be a lead drug and used effectively to control the MDR S. Typhi, thereby reducing public health issues and environmental pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdul Kareem M, Saayi KG, Althaf HS, Maruthi PE, Lakshmi Devi K (2013) Protective effect of nutmeg aqueous extract against experimentally-induced hepatotoxicity and oxidative stress in rats. J Ayurveda Integr Med 4(4):216–223

    Article  Google Scholar 

  • Adjene JO, Igbigbi PS (2010) Effect of chronic consumption of nutmeg on the stomach of adult wistar rats. Fooyin J Health Sci 2(2):62–65

    Article  Google Scholar 

  • Ahluwalia V, Kumar J, Sisodia R, Shakil NA, Walia S (2014) Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crop Prod 55:202–206

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Rai R (2012) Rapid green synthesis of silver and gold nanoparticles using peels of Punica granatum. Adv Mater Lett 3:376–380

    Article  CAS  Google Scholar 

  • Ansari MA, Khan HM, Khan AA, Malik A, Sultan A, Shahid M, Shujatullah F, Azam A (2011) Evaluation of antibacterial activity of silver nanoparticles against MSSA and MRSA on isolates from skin infections. Biol Med 3(2):141–146

    CAS  Google Scholar 

  • Aravinthan A, Govarthanan M, Selvam K, Praburaman L, Selvankumar T, Balamurugan R, Kamala-Kannan S, Jong-Hoon K (2015) Sunroot mediated synthesis and characterization of silver nanoparticles and evaluation of its antibacterial and rat splenocyte cytotoxic effects. Int J Nanomedicine 10:1977–1983

    CAS  Google Scholar 

  • Balaji C, Senthilkumar B (2011) Screening, phylogenetic analysis and antibiotic sensitivity pattern of Salmonella enteric serovar Typhi isolates from typhoid asymptomatic carriers. Asian Pac J Trop Med 4(10):769–772

    Article  Google Scholar 

  • Bhattacharya R, Mukherjee P (2008) Biological properties of naked metal nanoparticles. Adv. Drug Deliv Rev 60:1289–1306

    Article  CAS  Google Scholar 

  • Butler T (2011) Treatment of typhoid fever in the 21st century promises and short comings. Clin Microbiol Infect 17:959–963

    Article  CAS  Google Scholar 

  • Chen S, Tsutsumi T, Takatsuki S, Matsuda R, Kameya H, Nakajima M, Furuta M, Todoriki S (2012) Identification of 2-alkylcyclobutanones in nutmeg (Myristica fragrans). Food Chem 134:359–365

    Article  CAS  Google Scholar 

  • Chladek G, Mertas A, Barszczewska-Rybarek I (2011) Antifungal activity of denture soft lining material modified by silver nanoparticles- a pilot study. Int J Mol Sci 12(7):4735–4744

    Article  CAS  Google Scholar 

  • Chung JY, Choo JH, Lee MH, Hwang JK (2006) Anticariogenic activity of macelignan isolated from Myristica fragrans (nutmeg) against Streptococcus mutans. Phytomedicine 13:261–266

    Article  CAS  Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B 98:112–119

    Article  CAS  Google Scholar 

  • El-Sayed MH (2012) Di-(2-ethylhexyl) phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from the culture filtrate of newly isolated soil Streptomyces (Streptomyces mirabilisstrain NSQu-25). World Appl Sci J 20(9):1202–1212

    CAS  Google Scholar 

  • Govarthanan M, Cho M, Park JH, Jang JS, Yi YJ, Kamala-Kannan S, Oh BT (2016) Cottonseed oilcake extract mediated green synthesis of silver nanoparticles and its antibacterial and cytotoxic activity. J Nanomater. doi:10.1155/2016/7412431

    Article  Google Scholar 

  • Grover JK, Khandkar S, Vats V, Dhunnoo Y, Das D (2002) Pharmacological studies on Myristica fragrans—antidiarrheal, hypnotic, analgesic and hemodynamic (blood pressure) parameters. Methods Find Exp Clin Pharmacol 24:675–680

    Article  CAS  Google Scholar 

  • Gupta AD, Bansal VK, Babu V, Maithil N (2013) Chemistry, antioxidant and antimicrobial potential of nutmeg (Myristica fragrans Houtt). J Genet Eng Biotechnol 11:25–31

    Article  Google Scholar 

  • Gurunathan S, Han JW, Dayem AA (2013) Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). J Ind Eng Chem 19(5):1600–1605

    Article  CAS  Google Scholar 

  • Gurunathan S, Han JW, Kwon DN, Kim JH (2014) Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale Res Lett 31:373

    Article  Google Scholar 

  • Hemali P, Pooja M, Sumitra C (2015) Green synthesis of silver nanoparticles from marigold flower and its synergistic antimicrobial potential. Arab J Chem 8(5):732–741

    Article  Google Scholar 

  • Huang H, Yang Y (2008) Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol 68:2948–2953

    Article  CAS  Google Scholar 

  • Ibrahim HMM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275

    Article  Google Scholar 

  • Ilakkia S, Senbagam D, Senthilkumar B, Sivakumar P (2015) A prevalence study of typhoid fever and convalescent phase asymptomatic typhoid carriers among the schoolchildren in the northern part of Tamil Nadu. J Pub Health DOI. doi:10.1007/s10389-015-0655-x

    Article  Google Scholar 

  • Ilakkia S, Senbagam D, Senthilkumar B (2016) Analysis of TLR polymorphisms in typhoid patients and asymptomatic typhoid carriers among the schoolchildren. Egy J Med Human Genetics. doi:10.1016/j.ejmhg.2015.12.2010

    Article  Google Scholar 

  • Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus L. seed extract and its antibacterial activity. Ind Crop Prod 46:132–137

    Article  CAS  Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429

    Article  CAS  Google Scholar 

  • Jin R, Cao YC, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425(6957):487–490

    Article  CAS  Google Scholar 

  • Jin DQ, Lim CS, Hwang JK, Ha I, Han JS (2005) Antioxidant and anti-inflammatory activities of mace lignan in murine hippocampal cell line and primary culture of rat microglial cells. Biochem Biophys Res Commun 331:1264–1269

    Article  CAS  Google Scholar 

  • Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B 65:150–153

    Article  CAS  Google Scholar 

  • Kang K, Lim DH, Choi IH, Kang T, Lee K, Moon EY, Yang Y, Lee MS, Lim JS (2011) Vascular tube formation and angiogenesis induced by polyvinylpyrrolidone-coated silver nanoparticles. Toxicol Lett 205(3):227–234

    Article  CAS  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim J, Park SJ, Lee HJ (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Kumari J, Ajeet S (2016) Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol 14(2):311–317

    Article  Google Scholar 

  • Lallawmawma H, Sathishkumar G, Sarathbabu S, Ghatak S, Sivaramakrishnan S, Gurusubramanian G, Senthil Kumar N (2015) Synthesis of silver and gold nanoparticles using Jasminum nervosum leaf extract and its larvicidal activity against filarial and arboviral vector Culexquinquefasciatus Say (Diptera: Culicidae). Environ Sci Pollut Res DOI. doi:10.1007/s11356-015-5001-x

    Article  Google Scholar 

  • Lee KJ, Park SH, Govarthanan M (2013) Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater Lett 105:128–131

    Article  CAS  Google Scholar 

  • Lok C, Ho C, Chen R, He Q, Yu W, Sun H (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  Google Scholar 

  • Lu L, Hsieh M, Oriss TB, Morel PA, Starzl TE, Rao AS, Thomson AW (1995) Generation of DC from mouse spleen cell cultures in response to GM-CSF: immmunophenotypic and functional analyses. Immunol 84:127–l34

  • Mahady GB, Pendland SL, Stoia A, Hamill FA, Fabricant D, Dietz BM, Chadwick LR (2005) In vitro susceptibility of Helicobacter pylori to botanical extracts used traditionally for the treatment of gastrointestinal disorders. Phytother Res 19:988–991

    Article  Google Scholar 

  • Mahendran G, Ranjitha Kumari BD (2016) Biological activities of silver nanoparticles from Nothapodytes nimmoniana (Graham) Mabb. Fruit extracts Food Science and human Willness. doi:10.1016/j.fshw.2016.10.001

    Article  Google Scholar 

  • Mallavarapu GR, Ramesh S (1998) Composition of essential oils of nutmeg and mace. J Med Aromat Plant Sci 20:746–748

    CAS  Google Scholar 

  • Martinez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Vanden Hoek A, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial EL (2012) Antibacterial activity, inflammatory response, coagulation, and cytotoxicity effects of silver nanoparticles. Nanomedicine 8(3):328–336

    Article  CAS  Google Scholar 

  • Mohammed Fayaz A, Ao Z, Girilal M, Chen L, Xiao X, Kalaichelvan PT, Yao X (2012) Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV and HSV-transmitted infection. Int J Nanomedicine 7:5007–5018

    CAS  Google Scholar 

  • Murugan K, Selvanayaki K, Kalyanasundaram VB, Al-Sohaibani S (2013) Nanotechnological approach for exploring the antibiofilm a potential of an ethanomedicinal herb Andrographis paniculata for controlling lung infection causing Pseudomonas aeruginosa. Dig J Nanomater Bios 8(1):1117–1126

    Google Scholar 

  • Murugan K, Senthilkumar B, Senbagam D, Saleh Al S (2014) Biosynthesis of silver nanoparticles using Aacacia leucophloea extract and their antibacterial activity. Int J Nanomedicine 9(1):2431–2438

    Google Scholar 

  • Palaniyandi V, Jayabrata D, Raman P, Baskaralingam V, Kannaiyan P (2015) Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.) Ind Crop Prod 66:103–109

    Article  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    Article  CAS  Google Scholar 

  • Patil SB, Ghadyale VA, Taklikar SS, Kulkarni CR, Arvindekar AU (2011) Insulin secretagogue, alpha-glucosidase and antioxidant activity of some selected spices in streptozotocin-induced diabetic rats. Plant Food Hum Nutr 66:85–90

    Article  CAS  Google Scholar 

  • Perez C, Paul M, Bazerque P (1990) An antibiotic assay by the agar well diffusion method. Acta Biol Med Exp 15:113–115

    Google Scholar 

  • Praburaman L, Jang JS, Muthusamy G, Sendgottaiyan A (2016) Piper betle mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles. Artif Cells Nanomed Biotechnol 44(6):1400–1405

    CAS  Google Scholar 

  • Ramalingam V, Rajaram R, Premkumar C, Santhanam C, Dhinesh P, Vinothkumar S, Kaleshkumar K (2013) Biosynthesis of silver nanoparticles from deepsea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibioflim and cytotoxic activity. J Basic Microbiol 53:1–9

    Article  Google Scholar 

  • Rathi Sre PR, Reka M, Poovazhagi R, Arul Kumar M, Murugesan K (2015) Antibacterial and cytotoxic effect of biologically synthesized silver nanoparticles using aqueous root extract of Erythrina indica L. Spectrochim Acta Part A 135:1137–1144

    Article  CAS  Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941

    Article  CAS  Google Scholar 

  • Rowshanul HM, Rezaul KM (2009) Antimicrobial and cytotoxic activity of di-(2-ethylhexyl) phthalate and anhydrosophoradiol-3-acetate isolated from Calotropis gigantea (L) flower. Mycobiology 37(1):31–36

    Article  Google Scholar 

  • Salem MZM, Abdel-Megeed A, Ali HM (2014) Stem wood and bark extracts of Delonix regia (Boj.Ex.Hook): chemical analysis and antibacterial, antifungal, and antioxidant properties. Bioresources 9(2):2382–2395

    Article  Google Scholar 

  • Salema WM, Haridy M, Sayed WF, Hassan NH (2014) Antibacterial activity of silver nanoparticles synthesized from latex and leaf extract of Ficus sycomorus. Ind Crop Prod 62:228–234

    Article  Google Scholar 

  • Sankar R, Karthik A, Prabu A, Karthik S, Shivashangari KS, Ravikumar V (2013) Origanum vulgare mediated biosynthesis of silver nanoparticles for its antibacterial and anticancer activity. Colloid Surf B 108:80–84

    Article  CAS  Google Scholar 

  • Satapathy S, Ahlawat A, Paliwal A, Singh R, Singh MK, Gupta PK (2014) Effect of calcination temperature on nanoparticles morphology and its consequence on optical properties of Nd:Y2O3 transparent ceramics. Cryst Eng Comm 16:2723–2731

    Article  CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Yun YS (2010) Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101(20):7958–7965

    Article  CAS  Google Scholar 

  • Sawsan SA, Ahmad HI, Nik NNAR, Moftah MBN, Amin MSAM, Mohd OAK (2011) The effect of supercritical fluid extraction parameters on the nutmeg oil extraction and its cytotoxic and antiangiogenic properties. Procedia Food Sci 1:1946–1952

    Article  Google Scholar 

  • Seghal KG, Sabarathnam B, Selvin J (2010) Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59(3):432–438

    Article  Google Scholar 

  • Selvam K, Sudhakar C, Govarthanan M, Thiyagarajan P, Sengottaiyan A, Senthilkumar B, Selvankumar T (2017) Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci 10(1):6–12

    Article  CAS  Google Scholar 

  • Senthilkumar B, Prabakaran G (2005) Multidrug resistant Salmonella typhi in asymptomatic typhoid carriers among food handlers in Namakkal District Tamil Nadu. Ind J Med Microbiol 23(2):92–94

    Article  CAS  Google Scholar 

  • Senthilkumar B, Senbagam D, Rajasekarapandian M (2012) An epidemiological surveillance of asymptomatic typhoid carriers associated in respect to socioeconomic status in India. J Pub Health DOI. doi:10.1007/s10389-012-0545-4

    Article  Google Scholar 

  • Senthilkumar B, Sivakumar P, Madhanraj R, Senbagam D, Ilakkia S (2014) A comparative analysis of TLR5 polymorphism and clinical parameters in typhoid patients and asymptomatic typhoid carriers. J Pub Health DOI. doi:10.1007/s10389-013-0604-5

    Article  Google Scholar 

  • Severin N, Kirstein S, Sokolov IM, Rabe JP (2009) Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett 9(1):457–461

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem Azadirachta indica leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Singh R, Wagh P, Wadhwani S, Gaidhani S, Kumbhar A, Bellare J, Chopade BA (2013) Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomedicine 8:4277–4290

    Google Scholar 

  • Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA (2015) Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. Int J Antimicrob Agents 46(2):183–188

    Article  CAS  Google Scholar 

  • Sivalingam P, Antony JJ, Siva D, Achiraman S, Anbarasu K (2012) Mangrove Streptomyces sp. BDUKAS10 as nanofactory for fabrication of bactericidal silver nanoparticles. Colloid Surf B 98:12–17

    Article  CAS  Google Scholar 

  • Skladanowski M, Wypij M, Laskowski D, Golin’ska P, Dahm H, Rai M (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28:59–79

    Article  CAS  Google Scholar 

  • Sudhakar C, Selvam K, Govarthanan M, Senthilkumar B, Sengottaiyan A, Stalin M, Selvankumar T (2015) Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. J Genet Eng Biotechnol 13:93–99

    Article  Google Scholar 

  • Sulaiman SF, Ooi KL (2012) Antioxidant and anti food-borne bacterial activities of extracts from leaf and different fruit parts of Myristica fragrans Houtt. Food Control 25:533–536

    Article  Google Scholar 

  • Suresh AK, Doktycz MJ, Wang W, Moon JW, Gu B, Meyer HM III, Hensley DK, Allison DP, Phelps TJ, Pelletier DA (2011) Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 7(12):4253–4258

    Article  CAS  Google Scholar 

  • Tricoli A, Pratsinis SE (2010) Dispersed nanoelectrode devices. Nat Nanotechnol 5(1):54–60

    Article  CAS  Google Scholar 

  • Venkatesan J, Kim SK, Shim MS (2016) Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nano 6(12):235

    Google Scholar 

  • Vidya V, Daizy P, Joseph M (2016) Essential oil mediated synthesis of silver nanocrystals for environmental, anti-microbial and antioxidant applications. Mater Sci Eng C 61:429–436

    Article  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3(2):163–175

    Article  CAS  Google Scholar 

  • Xu N, Fan X, Yan X, Li X, Niu R, Tseng CK (2003) Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry 62:1221–1224

    Article  CAS  Google Scholar 

  • Yang S, Na MK, Jang JP, Kim KA, Kim BY, Sung NJ, Oh WK, Ahn JS (2006) Inhibition of protein tyrosine phosphatase 1B by lignans from Myristica fragrans. Phytother Res 20:680–682

    Article  CAS  Google Scholar 

  • Yi PT, Mashitah MD, Salmaiah U (2011) Media selection for mycelia growth, antifungal activity against wood-degrading fungi, and GC-MS study by Pycnoporus sanguineus. Bioresources 6(3):2719–2731

    Google Scholar 

  • Zaidi SFH, Yamada K, Kadowaki M, Usmanghani K, Sugiyama T (2009) Bactericidal activity of medicinal plants, employed for the treatment of gastrointestinal ailments, against Helicobacter pylori. J Ethnopharmacol 121:286–291

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Biotechnology (DBT), New Delhi, Govt. of India, for infrastructural facility and financial assistance in the form of State Biotech Hub (BT/04/NE/2009) to Mizoram University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthilkumar Balakrishnan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balakrishnan, S., Sivaji, I., Kandasamy, S. et al. Biosynthesis of silver nanoparticles using Myristica fragrans seed (nutmeg) extract and its antibacterial activity against multidrug-resistant (MDR) Salmonella enterica serovar Typhi isolates. Environ Sci Pollut Res 24, 14758–14769 (2017). https://doi.org/10.1007/s11356-017-9065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9065-7

Keywords

Navigation