Skip to main content

Advertisement

Log in

Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils

  • PCBs Risk Evaluation and Environmental Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abhilash PC, Singh HB, Powell JR, Singh BK (2012) Plant-microbe interactions: novel applications for exploitation in multi-purpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Abraham WR, Nogales B, Golyshin PN, Pieper DH, Timmis KN (2002) Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Curr Opin Microbiol 5:246–253

    Article  CAS  Google Scholar 

  • Adebusoye SA, Picardal FW, Ilori MO, Amund OO, Fuqua C, Grindle N (2007) Growth on dichlorobiphenyls with chlorine substitution on each ring by bacteria isolated from contaminated African soils. Appl Microbiol Biot 74:484–492

    Article  CAS  Google Scholar 

  • Ahn YB, Beaudette LA, Lee H, Trevors JT (2001) Survival of a GFP-labeled polychlorinated biphenyl degrading psychrotolerant Pseudomonas spp. in 4 and 22 degrees C soil microcosms. Microb Ecol 42:614–623

    Article  CAS  Google Scholar 

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    Article  CAS  Google Scholar 

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychloinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Acedemic Press, California

    Google Scholar 

  • Amos PW, Younger PL (2003) Substrate characterisation for a sub-surface reactive barrier to treat colliery spoil leachate. Water Res 37:108–120

    Article  CAS  Google Scholar 

  • Ang EL, Zhao HM, Obbard JP (2005) Recent advances in the bioremediation of persistent organic pollutants via biomolecular engineering. Enzyme Microb Tech 37:487–496

    Article  CAS  Google Scholar 

  • Anid PJ, Ravest-Webster BP, Vogel TM (1993) Effect of hydrogen peroxide on the biodegradation of PCBs in anaerobically dechlorinated river sediments. Biodegradation 4(4):241–248

    Article  CAS  Google Scholar 

  • Anyasi RO, Atagana HL (2013) Biological remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr. J. Biotechnol 10:18916–18938

  • Aronstein BN, Paterek JR, Kelley RL, Rice LE (1995) The effect of chemical pretreatment on the aerobic microbial degradation of PCB congeners in aqueous systems. J Ind Microbiol Biotechnol 15(1):55–59

  • Arslan M, Imran A, Khan QM, Afzal M (2015) Plant–bacteria partnerships for the remediation of persistent organic pollutants. Environ Sci Pollut Res 1–15

  • Aslund MLW, Zeeb BA, Rutter A, Reimer JK (2007) In situ phytoextraction of polychlorinated biphenyl—(PCB) contaminated soil. Sci Total Environ 374(1):1–12

    Article  CAS  Google Scholar 

  • Aslund MLW, Rutter A, Reimer KJ, Zeeb BA (2008) The effects of repeated planting, planting density, and specific transfer pathways on PCB uptake by Cucurbita pepo grown in field conditions. Sci Total Environ 405(1):14–25

    Article  CAS  Google Scholar 

  • ASTDR (2000) Toxicological profile for polychlorinated biphenyls (PCBs)

  • ATSDR Agency for Toxic Substances and Disease Registry (2011) Priority list of hazardous substances. http://www.atsdr.cdc.gov/SPL/index.html. Accessed 10 March 2013

  • Baars AJ, Bakkera MI, Baumanna RA, Boonb PE, Freijera JI, Hoogenboomb LAP, Hoogerbruggea R, Van Klaverenb JD, Liema AKD, Traagb WA, Vriesc JD (2004) Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in The Netherlands. Toxicol Lett 151(1):51–61

    Article  CAS  Google Scholar 

  • Baba D, Yasuta T, Yoshid N, Kimura Y, Miyake K, Inoue Y, Toyota K, Katayama A (2007) Anaerobic biodegradation of polychlorinated biphenyls by a microbial consortium originated from uncontaminated paddy soil. World J Microb Biot 23:1627–1636

    Article  CAS  Google Scholar 

  • Baciocchi R, Ciotti C, Gavasci R, Lombardi F (2005) Site remediation of an industrial waste dump: fenton treatment of PCB contaminated soil. Solid Waste Association

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Beaudette LA, Davies S, Fedorak PM, Ward OP, Pickard MA (1998) Comparison of gas chromatography and mineralization experiments for measuring loss of selected polychlorinated biphenyl congeners in cultures of white rot fungi. Appl Environ Microb 64:2020–2025

    CAS  Google Scholar 

  • Beaudette LA, Ward OP, Pickard MA, Fedorak PM (2000) Low surfactant concentration increases fungal mineralization of a polychlorinated biphenyl congener but has no effect on overall metabolism. Lett Appl Microbiol 30:155–160

    Article  CAS  Google Scholar 

  • Bedard DL (2003) Polychlorinated biphenyls in aquatic sediments: environmental fate and outlook for biological treatment. In: Haggblom MM, Bossert I (eds) Dehalogenation: microbial processes and environmental applications. Kluwer Press, Boston, pp 443–465

    Google Scholar 

  • Bedard DL, Van Dort H, Deweerd KA (1998) Brominated biphenyls prime extensive microbial reductive dehalogenation of Aroclor 1260 in Housatonic River sediment. Appl Environ Microbiol 64:1786–1795

    CAS  Google Scholar 

  • Bittsánszky A, Gullner G, Gyulai G, Komives T (2011) A case study: uptake and accumulation of persistent organic pollutants in Cucurbitaceae species. In: Organic xenobiotics and plants. Springer, Netherlands, p 77–85.

  • Bloom AD, de Serres F (1995) Ecotoxicity and human health: a biological approach to environmental remediation. CRC Press, Boca Raton

    Google Scholar 

  • Boldt TS, Sorensen J, Karlson U, Molin S, Ramos C (2004) Combined use of different GFP reporters for monitoring single-cell activities of a genetically modified PCB degrader in the rhizosphere of alfalfa. FEMS Microbiol Ecol 48:139–148

    Article  CAS  Google Scholar 

  • Borazjani H, Wiltcher D, Diehl S (2005) Bioremediation of polychlorinated biphenyl and petroleum contaminated soil. In: Lyon WG, Hong JJ, Reddy RK (eds) Proceedings of the international conference on environmental science and technology. American Science Press, New Orleans, pp 502–507

    Google Scholar 

  • Borja J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation. Process Biochem 40:1999–2013

    Article  CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, Delorenzo V, Dowling DN, Ogara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microb 61:1946–1952

    CAS  Google Scholar 

  • Cámara B, Herrera C, González M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6: 842–850

  • CCME (1999) Canadian soil quality guidelines for the protection of environmental and human health. Total PCBs. Canadian environmental quality guidelines. Canadian Council of Ministers of Environment

  • Chaudhry Q, Blom-Zandstra M, Cupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut R 12(1):34–48

    Article  CAS  Google Scholar 

  • Chávez FP, Gordillo F, Jerez CA (2006) Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol Adv 24(3):309–320

    Article  CAS  Google Scholar 

  • Chen Y, Adam A, Toure O, Dutta SK (2005) Molecular evidence of genetic modification of Sinorhizobium meliloti: enhanced PCB bioremediation. J Ind Microbiol Biot 32(11–12):561–566

    Article  CAS  Google Scholar 

  • Chen C, Yu C, Shen C, Tang X, Qin Z, Yang K, Shi H (2014) Paddy field–A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation. Environ Poll 190:43–50

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Chi XQ, Zhang JJ, Zhao S, Zhou NY (2013) Bioaugmentation with a consortium of bacterial nitrophenol-degraders for remediation of soil contaminated with three nitrophenol isomers. Environ Pollut 172:33–41

    Article  CAS  Google Scholar 

  • Cho YC, Ostrofsky EB, Rhee G (2004) Effects of a rhamnolipid biosurfactant on the reductive dechlorination of polychlorinated biphenyls by St. Lawrence River (North America) microorganisms. Environ Toxicol Chem 23(6):1425–1430

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    Article  CAS  Google Scholar 

  • Dasary SSR, Saloni J, Fletcher A, Anjaneyulu Y, Yu H (2010) Photodegradation of selected PCBs in presence of nano Ti-O2 as catalyst and H2O2 as ana oxidant. Int J Environ Res Public Health 7:3987–4001

    Article  CAS  Google Scholar 

  • de Carcer DA, Martin M, Mackova M, Macek T, Karlson U, Rivilla R (2007) The introduction of genetically modified microorganisms designed for rhizoremediation induces changes on native bacteria in the rhizosphere but not in the surrounding soil. ISME J 1:215–223

    Article  Google Scholar 

  • De J, Ramaiah N, Sarkar A (2006) Aerobic degradation of highly chlorinated polychlorobiphenyls by a marine bacterium, Pseudomonas CH07. World J Microbiol Biotechnol 22:1321–1327

    Article  CAS  Google Scholar 

  • Dercová K, Vrana B, Tandlich R (1999) Fenton's type reaction and chemical pretreatment of PCBs. Chemosphere, 39(15):2621–2628

  • DeWeerd KA, Bedard DL (1999) Use of halogenated benzoates and other halogenated aromatic compounds to stimulate the microbial dechlorination of PCBs. Environ Sci Technol 33(12):2057–2063

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  CAS  Google Scholar 

  • Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451

    Article  CAS  Google Scholar 

  • Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl Microbiol Biotechnol 97(23):9909–9921

  • Egorova DO, Demakov VA, Plotnikova EG (2011) Destruction of mixture of tri-hexa-chlorinated biphenyls by Rhodococcus genus strains. Appl Bioche Micro 47:599–606

    Article  CAS  Google Scholar 

  • Egorova DO, Demakov VA, Plotnikova EG (2013) Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains. J Hazard Mater 261:378–386

    Article  CAS  Google Scholar 

  • EPA (2009) Industrial waste resource guidelines. Environment protection (industrial waste resource) regulations 2009. Environmental Protection Agency Victoria (Publication IWRG643.1. September)

  • Fava F, Bertin L (1999) Use of exogenous specialised bacteria in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in slurry phase conditions. Biotechnol Bioeng 64:240–249

    Article  CAS  Google Scholar 

  • Fava F, Bertin L, Fedi S, Zannon D (2003) Methyl-Beta-Cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng 81:381–390

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshin P, Timmis KN (2003) Novel maltotriose esters enhance biodegradation of Aroclor 1242 by Burkholderia cepacia LB400. World J Microb Biot 19:637–643

    Article  CAS  Google Scholar 

  • Ficko SA, Rutter A, Zeeb BA (2010) Potential for phytoextraction of PCBs from contaminated soils using weeds. Sci Total Environ 408:3469–3476

    Article  CAS  Google Scholar 

  • Ficko S, Rutter A, Zeeb B (2011) Effect of pumpkin root exudates on ex situ polychlorinated biphenyl (PCB) phytoextraction by pumpkin and weed species. Environ Sci Pollut Res 18(9):1536–1543

    Article  CAS  Google Scholar 

  • Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8(2):67–75

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    Article  CAS  Google Scholar 

  • Francova K, Sura M, Macek T, Szekeres M, Bancos S, Demnerova K, Sylvestre M, Mackova M (2003) Preparation of plants containing bacterial enzyme for degradation of polychlorinated biphenyls. Fresenius Environ Bull 12:309–313

    CAS  Google Scholar 

  • Fries GF, Marrow GS (1981) Chlorobiphenyl movement from soil to soybean plants. J Agr Food Chem 29(4):757–759

    Article  CAS  Google Scholar 

  • Furukawa K, Fujihara H (2008) Microbial degradation of polychlorinated biphenyls: biochemical and molecular features. J Biosci Bioeng 105:433–449

  • Gardner K, Aulisio D, Spear JM (2004) In-situ dechlorination of polychlorinated biphenyls in sediments using zero-valent iron. Power point presentation from the RTDF Sediments meeting of February 18–19, 2004

  • Gerhardt KI, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminant potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Goi A, Kulik N, Trapido M (2006) Combined chemical and biological treatment of oil contaminated soil. Chemosphere 63(10):1754–1763

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445-446:237–260

    Article  CAS  Google Scholar 

  • Häggblom MM, Haggblom MH, Bossert ID (2003) Dehalogenation. Springer Science & Business Media, Berlin

    Google Scholar 

  • Hashmi MZ, Qin Z, Yao X, Ahmed Z, Xiaomei S, Shen C, Tang X (2016) PCBs attenuation and abundance of Dehalococcoides spp., bphC, CheA, and flic genes in typical polychlorinated biphenyl-polluted soil under floody and dry soil conditions. Environ Sci Pollut Res 23(4):3907–3913

    Article  CAS  Google Scholar 

  • Hatamian-Zarmi A, Shojaosadati SA, Vasheghani-Farahani E, Hosseinkhani S, Emamzadeh A (2009) Extensive biodegradation of higly chlorinated biphenyl and Aroclor 1242 by Pseudomonas aeruginosa TMU56 isolated from contaminated soils. Int Biodeter Biodegr 63:788–794

    Article  CAS  Google Scholar 

  • Hawker DW, Connell DW (1988) Octanol-water partition coefficients of polychlorinated biphenyl congeners. Environ Sci Technol 22:382–387

    Article  CAS  Google Scholar 

  • Holoubek I (2000) Polychlorinated Biphenyls (PCBs) - World-Wide Contaminated Sites. TOCOEN Report No. 173

  • Hulster A, Muller J, Marschner H (1994) Soil-plant transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans to vegetables of the cucumber family (Cucurbitaceae). Environ Sci Technol 28:1110–1115

    Article  Google Scholar 

  • Iwata Y, Gunther FA (1976) Translocation of the polychlorinated biphenyl Aroclor 1254 from soil into carrots under field conditions. Arch Environ Con Tox 4(1):44–59

    Article  CAS  Google Scholar 

  • Javorská H, Tlustoš P, Komárek M, Leštan D, Kaliszová R, Száková J (2009) Effect of ozonation on polychlorinated biphenyl degradation and on soil physico-chemical properties. J Hazard Mater 161(2):1202–1207

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Biotechnol 9:215–288

    Article  CAS  Google Scholar 

  • Juwarkar AA, Misra RR, Sharma JK (2014) Recent trends in bioremediation. In: Geomicrobiology and biogeochemistry. Springer, Berlin Heidelberg, pp 81–100

    Chapter  Google Scholar 

  • Kamei I, Kogura R, Kondo R (2006) Metabolism of 4,4′-Dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142. Appl Microbiol Biot 72:566–575

    Article  CAS  Google Scholar 

  • Kiely PD, Haynes JM, Higgins CH, Franks A, Mark GL, Morrissey JP, O’Gara F (2006) Exploiting new systems-based strategies to elucidate plant-bacterial interactions in the rhizosphere. Microb Ecol 51:257–266

    Article  CAS  Google Scholar 

  • Kjellerup BV, Naff C, Edwards SJ, Ghosh U, Baker JE, Sowers KR (2013) Effects of activated carbon on reductive dechlorination of PCBs by halorespiring bacteria indigenous to sediments. Water Res 52:1–10

    Article  CAS  Google Scholar 

  • Klasson KT, Reeves ME, Evans BS, Dudley CA (1994) Sequential anaerobic-aerobic degradation of indigenous PCBs in a contaminated soil matrix (No. CONF-941245--2). Oak Ridge National Lab., TN (United States)

  • Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Šašek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil. Chemosphere 43(2):207–215

    Article  CAS  Google Scholar 

  • Kuipers B, Cullen WR, Mohn WW (2003) Reductive dechlorination of weathered Aroclor 1260 during anaerobic biotreatment of Arctic soils. Can J Microbiol 49:9–14

    Article  CAS  Google Scholar 

  • Kurzawova V, Stursa P, Uhlik O, Norkova K, Strohalm M, Lipov J et al (2012) Plant/microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. New Biotechnol 30:15–22

    Article  CAS  Google Scholar 

  • LaRoe, SL, Fricker AD, Bedard DL (2014) Dehalococcoides mccartyi strain JNA in pure culture extensively dechlorinates Aroclor 1260 according to polychlorinated biphenyl (PCB) Dechlorination Process N. Environ Sci Technol 48(16):9187–9196

  • Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, …, Straif K (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol 14(4): 287

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    Article  CAS  Google Scholar 

  • Lehtinen T (2010) Bioremediation trial on PCB polluted soils – A bench study in Iceland. Master’s thesis, Faculty of Earth Sciences, University of Iceland, p 105

  • Leigh MB, Prouzova P, Mackova M, Macek T, Nagle DP, Fletcher JS (2006) Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microb 72:2331–2342

    Article  CAS  Google Scholar 

  • Leigh MB, Pellizari VH, Uhlik O, Sutka R, Rodrigues J, Ostrom NE, Zhou J, Tiedje JM (2007) Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME J 1:134–148

    Article  CAS  Google Scholar 

  • Li LKY (2006) Chemical reduction/oxidation advanced physicochemical treatment processes. In: Wang LK, Hung Y-T, Shammas NK (eds) . Humana Press, New York, pp 483–519

    Google Scholar 

  • Li L, Eng P, Mohamed EISA (2007) Remediation treatment technologies: reference guide for developing countries facing persistent organic pollutants

  • Liste HH, Alexander M (2000) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40(1):11–14

    Article  CAS  Google Scholar 

  • Liu JY, Schnoor JL (2008) Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere 73(10):1608–1616

    Article  CAS  Google Scholar 

  • Liu YS, Ma MY, Shi Z (2011) Application of rhamnolipid biosurfactant for removing polychlorinated biphenyls from contaminated soil. Adv Mater Res 233:608–613

    Google Scholar 

  • Liu Y, Ma M, Shi Z, Deng Y, Zeng X, Hong Y (2012) A study on remediation of PCBs-contaminated soil by a combination of biosurfactant washing, UV-irradiation and biodegradation. Adv Sci Lett 10(1):344–348

    Article  CAS  Google Scholar 

  • Long YY, Fang Y, Zhang C, Du Y, Shentu J, Shen DS (2015) Degradation of polychlorinated biphenyls by sequential anaerobic–aerobic composting. Water Air Soil Poll 226(3):1–12

    Article  CAS  Google Scholar 

  • Low JE, Whitfield Åslund ML, Rutter A, Zeeb BA (2010) Effect of plant age on PCB accumulation by Cucurbita pepo ssp. Pepo. J Environ Qual 39(1):245–250

    Article  CAS  Google Scholar 

  • Luo C, Wang S, Wang Y, Yang R, Zhang G, Shen Z (2015) Effects of EDDS and plant-growth-promoting bacteria on plant uptake of trace metals and PCBs from e-waste–contaminated soil. J Hazard Mater 286:379–385

    Article  CAS  Google Scholar 

  • Macedo AJ, Neu TR, Kuhlicke U, Abraham WR (2007) Adaptation of microbial communities in soil contaminated with polychlorinated biphenyls, leading to the transformation of more highly chlorinated congeners in biofilm communities. Biofilms 3:37–46

    Google Scholar 

  • Mackova M, Barriault D et al (2006) Phytoremediation of polychlorinated biphenyls in Phytoremediation Rhizoremediation. Springer, Netherlands, p 143–167

  • Mackova M, Prouzova P, Stursa P, Ryslava E, Uhlik O, Beranova K, Rezek J, Kurzawova V, Demnerova K, Macek T (2009) Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environ Sci Pollut R 16:817–829

    Article  CAS  Google Scholar 

  • Manzano MA, Perales JA, Sales D, Quiroga JM (2003) Enhancement of aerobic microbial degradation of polychlorinated biphenyl in soil microcosms. Environ Toxicol Chem 22(4):699–705

  • Marco-Urrea E, Reddy CA (2012) Degradation of chloro-organic pollutants by white rot fungi. In Microbial degradation of xenobiotics, Springer Berlin, Heidelberg, pp 31–36

  • Master ER, Lai VV, Kuipers B, Cullen WR, Mohn W (2002) Sequential anaerobic–aerobic treatment of soil contaminated with weathered Aroclor 1260. Environ Sci Technol 36:100–103

    Article  CAS  Google Scholar 

  • Mattina MI, Berger WA, Eitzer BD (2007) Factors affecting the phytoaccumulation of weathered, soil-borne organic contaminants: analyses at the ex planta and in planta sides of the plant root. Plant Soil 291:143–154

    Article  CAS  Google Scholar 

  • Matturro B, Ubaldi C, Grenni P, Caracciolo AB, Rossetti S (2016) Polychlorinated biphenyl (PCB) anaerobic degradation in marine sediments: microcosm study and role of autochthonous microbial communities. Environ Sci Pollut Res 23(13):12613–12623

    Article  CAS  Google Scholar 

  • May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbioly 74(7):2089–2094

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2004) Phytoremediation: transformation and control of contaminants, vol 121. Wiley, New York

    Google Scholar 

  • Meggo RE, Schnoor JL (2013) Cleaning polychlorinated biphenyl (PCB) contaminated garden soil by phytoremediation. Environ Sci 1:33–52

    Google Scholar 

  • Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    Article  CAS  Google Scholar 

  • Mikszewski A (2004) Emerging technologies for the in situ remediation of PCB-contaminated soils and sediments: Bioremediation and nanoscale zero-valent Iron. Status Report prepared for the US EPA Technology Office under a Technology Innovation Program, Washington, DC

  • Mohammadi M, Chalavi V, Novakova-Sura M, Laliberté JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97(3):496–505

    Article  CAS  Google Scholar 

  • Nanekar SV, Juwarkar AA (2015). Environmental biotechnology: a quest for sustainable solutions. In: Plant biology and biotechnology. Springer India, New Delhi, p 663–671

  • Nanekar S, Dhote M, Kashyap S, Singh SK, Juwarkar AA (2015) Microbe assisted phytoremediation of oil sludge and role of amendments: a mesocosm study. Int J Environ Sci Technol 12(1):193–202

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotech 15:225–230

    Article  CAS  Google Scholar 

  • Nollet H, Van de Putte I, Raski L, Verstraete W (2005) Carbon/electron source dependence of polychlorinated biphenyl dechlorination pathways for anaerobic granules. Chemosphere 58:299–310

    Article  CAS  Google Scholar 

  • Novakova H, Vosahlíkova M, Pazlarova J, Mackova A, Burkhard J, Demnerova K (2002) PCB metabolism by Pseudomonas sp. P2. Int Biodeter Biodegr 50:47–54

    Article  CAS  Google Scholar 

  • Novakova M, Mackova M, Chrastilova Z, Viktorova J, Szekeres M, Demnerova K, Macek T (2009) Cloning the bacterial bphC gene into Nicotiana tabacum to improve the efficiency of PCB phytoremediation. Biotechnol Bioeng 102:29–37

    Article  CAS  Google Scholar 

  • O’Riordan T (1995) Environmental sciences for environmental management. Wiley, New York

    Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biot 65:250–258

    Article  CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

  • Pakdeesusuk U, Lee CM, Coates JT, Freedman DL (2005) Assessment of natural attenuation via in situ reductive dechlorination of polychlorinated biphenyls (PCBs) in sediments of the Twelve Mile Creek arm of Lake Hartwell, SC. Environ Sci Technol 39:945–952

    Article  CAS  Google Scholar 

  • Passatore L, Rossetti S, Juwarkar AA, Massacci A (2014) Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. J Hazard Mater 278:189–202

    Article  CAS  Google Scholar 

  • Payne RB, May HD, Sowers KR (2011) Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium. Environ Sci Technol 45:8772–8779

    Article  CAS  Google Scholar 

  • Petric I, Hrsak D, Fingler S, Udikovic-Kolić N, Bru D, Martin-Laurent F (2011) Insight in the PCB-degrading functional community in long-term contaminated soil under bioremediation. J Soils Sediments 11:290–300

    Article  CAS  Google Scholar 

  • Petroutsos D, Katapodis P, Samiotaki M, Panayotou G, Kekos D (2008) Detoxification of 2, 4-dichlorophenol by the marine microalga Tetraselmis marina. Phytochemistry 69:707–714

    Article  CAS  Google Scholar 

  • Pieper DH (2005) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biot 67:170–191

    Article  CAS  Google Scholar 

  • Pinedo-Rilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  Google Scholar 

  • Pinsker NI (2011) Phytoremediation of PCB contaminated soil: effectiveness and regulatory policy (Doctoral dissertation, Virginia Commonwealth University Richmond, Virginia)

  • Plotnikova EG, Solyanikova IP, Egorova DO, Shumkova ES, Golovleva LA (2012) Degradation of 4-chlorobiphenyl and 4-chlorobenzoic acid by the strain Rhodococcus ruber P25. Microbiology 81:143–153

    Article  CAS  Google Scholar 

  • Prasad MNV (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. Ministry of Environment and Forests, New Delhi. URL: http://moef.nic.in/downloads/public-information/BioremediationBook.pdf

  • Prządo D, Kafarski P, Steininger M (2007) Studies on degradation of polychlorinated biphenyls by means of Fenton’s reagent. Pol J Environ Stud 16:881–887

    Google Scholar 

  • Quensen JF III, Boyd SA, Tiedje JM (1990) Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments. Appl Environ Microb 56(8):2360–2369

    CAS  Google Scholar 

  • Quiroga JM, Riaza A, Manzano MA (2009) Chemical degradation of PCB in the contaminated soils slurry: Direct Fenton oxidation and desorption combined with the photo-Fenton process. J Environ Sci Health A 44(11):1120–1126

  • Rahuman M, Pistone L, Trifirò F, Miertus S (2000) Destruction technologies for polychlorinated biphenyls. Proceedings of Expert Group Meetings on POPs and Pesticides Contamination: Remediation Technologies (April 2000) and on Clean Technologies for the Reduction and Elimination of POPs (May 2000). United Nations Industrial Development Organization (ICS-UNIDO)

  • Ray S, Karpouzas D, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926

    Article  CAS  Google Scholar 

  • Rein A (2006) Remediation of PCB-contaminated soils—risk analysis of biological in situ processes (Doctoral dissertation, Universität Tübingen)

  • Rein A, Fernqvist MM, Mayer P, Trapp S, Bittens M, Karlson UG (2007) Degradation of PCB congeners by bacterial strains. Appl Microbiol Biot 77:469–481

    Article  CAS  Google Scholar 

  • Robinson KG, Ghosh MM, Shi Z (1996) Mineralization enhancement of non-aqueous phase and soilbound PCB using biosurfactant. Water Sci Technol 34(7-8):303–309

  • Rodrigues JLM, Kachel CA, Aiello MR, Quensen JF III, Maltseva OV, Tsoi TV, Tiedje JM (2006) Degradation of Aroclor 1242 dechlorination products in sediments by Burkholderia xenovorans LB400(Ohb) and Rhodococcus sp. strain RHA1(Fcb). Appl Environ Microb 72:2476–2482

    Article  CAS  Google Scholar 

  • Ross G (2004) The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotox Environ Safe 59:275–291

    Article  CAS  Google Scholar 

  • Rybkina DO, Plotnikova EG, Dorofeeva LV, Mironenko YL, Demakov VA (2003) A new aerobic gram-positive bacterium with a unique ability to degrade ortho- and para-chlorinated biphenyls. Microbiology 72:672–677

    Article  CAS  Google Scholar 

  • Rysavy JP, Yan T, Novak PJ (2005) Enrichment of anaerobic polychlorinated biphenyl dechlorinators from sediment with iron as a hydrogen source. Water Res 39:569–557

    Article  CAS  Google Scholar 

  • Safe S (1984) Polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs): biochemistry, toxicology, mechanism of action. CRC Cr Rev Toxicol 13:310–395

    Google Scholar 

  • Segura A, Rodríguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation. Microb Biotech 2(4):452–464

    Article  CAS  Google Scholar 

  • Sharma JK, Gautam RK, Misra RR, Kashyap SM, Singh SK, Juwarkar AA (2014) Degradation of di-through hepta-chlorobiphenyls in clophen oil using microorganisms isolated from long term PCBs contaminated soil. Indian J Microbiol 54(3):337–342

    Article  CAS  Google Scholar 

  • Sierra I, Valera JL, Marina ML, Laborda F (2003) Study of the biodegradation process of polychlorinated biphenyls in liquid medium and soil by a new isolated aerobic bacterium (Janibacter sp.) Chemosphere 53:609–618

    Article  CAS  Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biot 54:838–843

    Article  CAS  Google Scholar 

  • Singer AC, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyls contaminated soil. Environ Toxicol Chem 22:1998–2004

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorus-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  CAS  Google Scholar 

  • Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Microbiol 28:111–116

    CAS  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soil: an overview of global market and available technologies. In: Advances in applied bioremediation. Springer, Berlin Heidelberg, p 1–19

  • Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244

    Article  CAS  Google Scholar 

  • Sonoki S, Fujihiro S, Hisamatsu S (2007) Genetic engineering of plants for phytoremediation of polychlorinated biphenyls. In: Phytoremediation, Humana Press, New York, p 3–13

  • Sul WJ, Park J, Tsoi TV, Zysstra GJ, Tiedje JM (2009) DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygnase genes from polychlorinated biphenyl-contaminated river sediments. Appl Environ Microb 75:5501–5506

    Article  CAS  Google Scholar 

  • Sylvestre M, Macek T, Mackova M (2009) Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs). Cur Opin Biotech 20(2):242–247

    Article  CAS  Google Scholar 

  • Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W et al (2010) Influence of arbuscular mycorrhiza and rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. Int J Phytoremediat 12:516–533

    Article  CAS  Google Scholar 

  • Tharakan J, Tomlinson D, Addagada A, Shafagati A (2006) Biotransformation of PCBs in contaminated sludge: potential for novel biological technologies. Eng Lif Sci 6:43–50

    Article  CAS  Google Scholar 

  • Tiedje JM, Quensen JF III, Chee-Sanford J, Schimel JP, Cole JA, Boyd SA (1993) Microbial reductive dechlorination of PCBs. Biodegradation 4:231–240

    Article  CAS  Google Scholar 

  • Toure O, Chen YQ, Dutta SK (2003) Sinorhizobium meliloti electrotransporant containing ortho-dechlorination gene shows enhanced PCB dechlorination. Fresenius Environ Bull 12(3):320–322

    CAS  Google Scholar 

  • Treasury Board of the Canadian Secretariat (TBCS) (2011) Federal Contaminated Sites Inventory (FCSI) http://www.tbs-sct.gc.ca/fcsi-rscf/. Accessed 25 March 2011

  • Tu C, Teng Y, Luo Y, Li X, Sun X, Li Z, Liu W, Christie P (2011) Potential for biodegradation of polychlorinated biphenyls (PCBs) by Sinorhizobium meliloti. J Hazard Mater 186:1438–1444

    Article  CAS  Google Scholar 

  • Uhlik O, Jecna K, Mackova M, Vlcek C, Hroudova M, Demnerova K, Paces V, Macek T (2009) Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing. Appl Environ Microb 75:6471–6477

    Article  CAS  Google Scholar 

  • UKEPA (2004) Framework for the classification of contaminated soils as hazardous waste United Kingdom Environmental Protection Agency

  • UNIDO (2010) Persistent organic pollutants: contaminated site investigation and management toolkit

  • USEPA (2011) Search Superfund Site Information http://cumulis.epa.gov/supercpad/cursites/srchsites.cfm

  • USEPA (2012) PCB regulations at 40 CFR Part 761. United States Environmental Protection Agency. Toxic Substances Control Act

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73(7):1163–1172

    Article  CAS  Google Scholar 

  • Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical–biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359

    Article  CAS  Google Scholar 

  • Viktorová J, Novakova M, Trbolova L, Vrchotova B, Lovecka P, Mackova M, Macek T (2014) Characterization of transgenic tobacco plants containing bacterial bphc gene and study of their phytoremediation ability. Int J Phytoremediat 16(9):937–946

    Article  CAS  Google Scholar 

  • Villacieros M, Whelan C, Mackova M, Molgaard J, Sanchez-Contreras M, Lloret J, de Carcer A, Oruezabal RI, Bolanos L, Macek T, Karlson U, Dowling DN, Martin M, Rivilla R (2005) Polychlorinated biphenyl rhizoremediation by Pseudomonas fluorescens F113 derivatives, using a Sinorhizobium meliloti nod system to drive bph gene expression. Appl Environ Microb 71:2687–2694

    Article  CAS  Google Scholar 

  • Wang S, Zhang S, Huang H, Zhao M, Lv J (2011) Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.) Chemosphere 85:379–385

    Article  CAS  Google Scholar 

  • Wang Y, Ren H, Pan H, Liu J, Zhang L (2015) Enhanced tolerance and remediation to mixed contaminates of PCBs and 2, 4-DCP by transgenic alfalfa plants expressing the 2, 3-dihydroxybiphenyl-1, 2-dioxygenase. J Hazard Mater 286:269–275

    Article  CAS  Google Scholar 

  • Watts JEM, Fagervold SK, May HD, Sowers KR (2005) A PCR-based specific assay reveals a population of bacteria within the Chloroflexi associated with the reductive dehalogenation of polychlorinated biphenyls. Microbiology 151:2039–2046

    Article  CAS  Google Scholar 

  • Webber MD, Pietz RI, Granato TC, Svoboda ML (1994) Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse. J Environ Qual 23(5):1019–1026

    Article  CAS  Google Scholar 

  • Weber R (2007) Relevance of PCDD/PCDF formation for the evaluation of POPs destruction technologies—review on current status and assessment gaps. Chemosphere 67(9):S109–S117

    Article  CAS  Google Scholar 

  • White J, Parrish Z, Isleyen M, Gent M, Iannucci-Berger W, Eitzer B, Kelsey J, Mattina M (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species. Int J Phytorem 8:63–79

    Article  CAS  Google Scholar 

  • Wiegel J, Wu Q (2000) Microbial reductive dehalogenation of polychlorinated biphenyls. FEMS Microbiol Ecol 32:1–15

    Article  CAS  Google Scholar 

  • Xu L, Teng Y, Li ZG, Norton JM, Luo YM (2010) Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum. Sci Total Environ 408(5):1007–1013

    Article  CAS  Google Scholar 

  • Yadav JS, Quensen JF, Tiedje JM, Reddy CA (1995) Degradation of polychlorinated biphenyl mixtures (Aroclors 1242, 1254, and 1260) by the white rot fungus Phanerochaete chrysosporium as evidenced by congener-specific analysis. Appl Environ Microbiol 61(7):2560–2565

    CAS  Google Scholar 

  • Yan T, LaPara TM, Novak PJ (2006) The reductive dechlorination of 2,3,4,5-tetrachlorobiphenyl in three different sediment cultures: evidence for the involvement of phylogenetically similar Dehalococcoides-like bacterial populations. FEMS Microbiol Ecol 55:248–261

    Article  CAS  Google Scholar 

  • Yang S (1994) Enhancement of PCB congener biodegradation by pre-oxidation with Fenton’s reagent. Water Sci Technol 30(7):105–113

    Article  Google Scholar 

  • Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB)-contaminated soil. Int J Phytoremediat 8:199–221

    Article  CAS  Google Scholar 

  • Zhang B, Zhu Z, Jing L, Cai Q, Li Z (2012) Pilot-scale demonstration of biosurfactant-enhanced in-situ bioremediation of a contaminated site in newfoundland and labrador

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33(3):406–413

Download references

Acknowledgments

The authors are thankful to the Director, CSIR-NEERI, Nagpur, for the kind support and encouragement. JKS is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asha A. Juwarkar.

Additional information

Responsible editor: Hongwen Sun

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, J.K., Gautam, R.K., Nanekar, S.V. et al. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. Environ Sci Pollut Res 25, 16355–16375 (2018). https://doi.org/10.1007/s11356-017-8995-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8995-4

Keywords

Navigation