Skip to main content

Advertisement

Log in

Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos

  • Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In ecotoxicology, transcriptomics is an effective way to detect gene expression changes in response to environmental pollutants. Such changes can be used to identify contaminants or contaminant classes and can be applied as early warning signals for pollution. To do so, it is important to distinguish contaminant-specific transcriptomic changes from genetic alterations due to general stress. Here we present a first step in the identification of contaminant class-specific transcriptome signatures. Embryos of zebrafish (Danio rerio) were exposed to three substances (methylmercury, chlorpyrifos and Aroclor 1254, each from 24 to 48 hpf exposed) representing sediment typical contaminant classes. We analyzed the altered transcriptome to detect discriminative genes significantly regulated in reaction to the three applied contaminants. By comparison of the results of the three contaminants, we identified transcriptome signatures and biologically important pathways (using Cytoscape/ClueGO software) that react significantly to the contaminant classes. This approach increases the chance of finding genes that play an important role in contaminant class-specific pathways rather than more general processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aluru N, Jenny MJ, Hahn ME (2014) Knockdown of a zebrafish aryl hydrocarbon receptor repressor (AHRRa) affects expression of genes related to photoreceptor development and hematopoiesis. Toxicol Sci 139:381–395. doi:10.1093/toxsci/kfu052

    Article  CAS  Google Scholar 

  • Aly HAA, Domènech Ò (2009) Aroclor 1254 induced cytotoxicity and mitochondrial dysfunction in isolated rat hepatocytes. Toxicology 262:175–183. doi:10.1016/j.tox.2009.05.018

    Article  CAS  Google Scholar 

  • Aly HAA, Domènech Ò, Abdel-Naim AB (2009) Aroclor 1254 impairs spermatogenesis and induces oxidative stress in rat testicular mitochondria. Food Chem Toxicol 47:1733–1738. doi:10.1016/j.fct.2009.03.019

    Article  CAS  Google Scholar 

  • Bai S, Thummel R, Godwin AR et al (2005) Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol 24:247–260. doi:10.1016/j.matbio.2005.03.007

    Article  CAS  Google Scholar 

  • Bartosiewicz M, Penn S, Buckpitt A (2001) Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect 109:71–74. doi:10.1289/ehp.0110971

    Article  CAS  Google Scholar 

  • Behra M, Cousin X, Bertrand C et al (2002) Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci 5:111–118. doi:10.1038/nn788

    Article  CAS  Google Scholar 

  • Bindea G, Mlecnik B, Hackl H et al (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England) 25:1091–1093. doi:10.1093/bioinformatics/btp101

    Article  CAS  Google Scholar 

  • Borlak J, Jenke HS (2008) Cross-talk between aryl hydrocarbon receptor and mitogen-activated protein kinase signaling pathway in liver cancer through c-raf transcriptional regulation. Molecular cancer research : MCR 6:1326–1336. doi:10.1158/1541-7786.MCR-08-0042

    Article  CAS  Google Scholar 

  • Bradham CA, Qian T, Streetz K et al (1998) The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol Cell Biol 18:6353–6364. doi:10.1128/MCB.18.11.6353

    Article  CAS  Google Scholar 

  • Braunbeck T, Kais B, Lammer E et al (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int 22:16247–16261. doi:10.1007/s11356-014-3814-7

    Article  CAS  Google Scholar 

  • Cambier S, Gonzalez P, Nathalie MD et al (2012) Effects of dietary methylmercury on the zebrafish brain: histological, mitochondrial, and gene transcription analyses. Biometals 25:165–180. doi:10.1007/s10534-011-9494-6

    Article  CAS  Google Scholar 

  • Carney SA, Chen J, Burns CG et al (2006) Aryl hydrocarbon receptor activation produces heart-specific transcriptional and toxic responses in developing zebrafish. Mol Pharmacol 70:549–561. doi:10.1124/mol.106.025304

    Article  CAS  Google Scholar 

  • Chaty S, Rodius F, Vasseur P (2004) A comparative study of the expression of CYP1A and CYP4 genes in aquatic invertebrate (freshwater mussel, Unio tumidus) and vertebrate (rainbow trout, Oncorhynchus mykiss). Aquat Toxicol 69:81–94. doi:10.1016/j.aquatox.2004.04.011

    Article  CAS  Google Scholar 

  • Churchill GA (2004) Using ANOVA to analyze microarray data. BioTechniques 37(173–5):177

    Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662. doi:10.1080/10408440600845619

    Article  CAS  Google Scholar 

  • Dalman MR, Deeter A, Nimishakavi G, Duan Z-H (2012) Fold change and p-value cutoffs significantly alter microarray interpretations. BMC bioinformatics 13:S11. doi:10.1186/1471-2105-13-S2-S11

    Article  Google Scholar 

  • Demir F, Uzun FG, Durak D, Kalender Y (2011) Subacute chlorpyrifos-induced oxidative stress in rat erythrocytes and the protective effects of catechin and quercetin. Pestic Biochem Physiol 99:77–81. doi:10.1016/j.pestbp.2010.11.002

    Article  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci 95:14863–14868. doi:10.1073/pnas.95.25.14863

    Article  CAS  Google Scholar 

  • Fedorenkova A, Vonk J (2010) Ecotoxicogenomics: bridging the gap between genes and populations. Environmental science & technology 44:4328–4333

    Article  CAS  Google Scholar 

  • Feiler U, Höss S, Ahlf W et al (2013) Sediment contact tests as a tool for the assessment of sediment quality in German waters. Environ Toxicol Chem 32:144–155. doi:10.1002/etc.2024

    Article  CAS  Google Scholar 

  • Freyhult E, Landfors M, Önskog J et al (2010) Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinformatics 11:1–14. doi:10.1186/1471-2105-11-503

    Article  Google Scholar 

  • Fujita H, Okimura Y, Utsumi T et al (2006) 4-Hydroxy-3,5,3′,4′-tetrachlorobiphenyl induced membrane permeability transition in isolated rat liver mitochondria. J Clin Biochem Nutr 38:167–175. doi:10.3164/jcbn.38.167

    Article  CAS  Google Scholar 

  • Garcia-Käufer M, Gartiser S, Hafner C et al (2015) Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. Environ Sci Pollut Res Int 22:16341–16357. doi:10.1007/s11356-014-3894-4

    Article  Google Scholar 

  • Giancarlo R, Lo Bosco G, Pinello L (2010) Distance functions, clustering algorithms and microarray data analysis. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 125–138

    Google Scholar 

  • Hahn ME (2001) Dioxin toxicology and the aryl hydrocarbon receptor: insights from fish and other non-traditional models. Marine biotechnology (New York, NY) 3:S224–S238. doi:10.1007/s10126-001-0045-y

    Article  CAS  Google Scholar 

  • Handley-Goldstone HM, Grow MW, Stegeman JJ (2005) Cardiovascular gene expression profiles of dioxin exposure in zebrafish embryos. Toxicol Sci 85:683–693. doi:10.1093/toxsci/kfi116

    Article  CAS  Google Scholar 

  • Hassan SA, Moussa EA, Abbott LC (2012) The effect of methylmercury exposure on early central nervous system development in the zebrafish (Danio rerio) embryo. J Appl Toxicol 32:707–713. doi:10.1002/jat.1675

    Article  CAS  Google Scholar 

  • Henry T, Spitsbergen J, Hornung MW et al (1997) Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio). Toxicol Appl Pharmacol 141:56–68

    Article  Google Scholar 

  • Ho NY, Yang L, Legradi J et al (2013) Gene responses in the central nervous system of zebrafish embryos exposed to the neurotoxicant methyl mercury. Environmental Science & Technology 47:3316–3325. doi:10.1021/es3050967

    Article  CAS  Google Scholar 

  • Hollert H, Keiter S, König N et al (2003) A new sediment contact assay to assess particle-bound pollutants using zebrafish (Danio rerio) embryos. J Soils Sediments 3:197–207. doi:10.1065/jss2003.09.085

    Article  Google Scholar 

  • Höss S, Ahlf W, Fahnenstich C et al (2010) Variability of sediment-contact tests in freshwater sediments with low-level anthropogenic contamination-determination of toxicity thresholds. Environ Pollut 158:2999–3010. doi:10.1016/j.envpol.2010.05.013

    Article  Google Scholar 

  • Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503. doi:10.1038/nature12111

    Article  CAS  Google Scholar 

  • Ishida T, Nakajima T, Kudo A, Kawakami A (2010) Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Dev Biol 340:468–479. doi:10.1016/j.ydbio.2010.01.036

    Article  CAS  Google Scholar 

  • Jönsson ME, Jenny MJ, Woodin BR et al (2007) Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebra fish exposed to 3,3′,4,4′,5-pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 100:180–193. doi:10.1093/toxsci/kfm207

    Article  Google Scholar 

  • Jönsson ME, Kubota A, Timme-Laragy AR et al (2012) Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol Appl Pharmacol 265:166–174. doi:10.1016/j.taap.2012.09.023

    Article  Google Scholar 

  • Keiter S, Peddinghaus S, Feiler U et al (2010) DanTox-a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants. J Soils Sediments 10:714–717. doi:10.1007/s11368-010-0221-7

    Article  CAS  Google Scholar 

  • Keiter SH, Braunbeck T, Feiler U, et al. (2013) DanTox—Entwicklung und Anwendung eines Verfahrens zur Ermittlung spezifischer Toxizität und molekularer Wirkungsmechanismen sedimentgebundener Umweltschadstoffe mit dem Zebrabärbling (Danio rerio) : Schlussbericht.

  • Kosmehl T, Otte JC, Yang L et al (2012) A combined DNA-microarray and mechanism-specific toxicity approach with zebrafish embryos to investigate the pollution of river sediments. Reproductive toxicology (Elmsford, NY) 33:245–253. doi:10.1016/j.reprotox.2012.01.005

    Article  CAS  Google Scholar 

  • Kwong TC (2002) Organophosphate pesticides: biochemistry and clinical toxicology. Ther Drug Monit 24:144–149. doi:10.1097/00007691-200202000-00022

    Article  CAS  Google Scholar 

  • Legradi J (2011) Microarray based transcriptomics and the search for biomarker genes in zebrafish. Ruprecht-Karls Universität, Heidelberg

    Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9. doi:10.1289/ehp.8194

    CAS  Google Scholar 

  • Lewis RS, Noor SM, Fraser FW et al (2014) Regulation of embryonic hematopoiesis by a cytokine-inducible SH2 domain homolog in zebrafish. Journal of immunology (Baltimore, Md : 1950) 192:5739–5748. doi:10.4049/jimmunol.1301376

    CAS  Google Scholar 

  • Li W (2012) Volcano plots in analyzing differential expressions with mRNA microarrays. J Bioinforma Comput Biol 10:1231003. doi:10.1142/S0219720012310038

    Article  Google Scholar 

  • Liu H, Nie F-H, Lin H-Y et al (2014) Developmental toxicity, oxidative stress, and related gene expression induced by dioxin-like PCB 126 in zebrafish (Danio rerio). Environmental toxicology n/a-n/a. doi:10.1002/tox.22044

    Google Scholar 

  • Liu L, Xu Y, Xu L et al (2015) Analysis of differentially expressed proteins in zebrafish (Danio rerio) embryos exposed to chlorpyrifos. Comparative biochemistry and physiology Toxicology & pharmacology : CBP 167:183–189. doi:10.1016/j.cbpc.2014.10.006

    Article  CAS  Google Scholar 

  • McCarthy DJ, Smyth GK (2009) Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics (Oxford, England) 25:765–771. doi:10.1093/bioinformatics/btp053

    Article  CAS  Google Scholar 

  • Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif 31:274–295. doi:10.1007/s00357-014-9161-z

    Article  Google Scholar 

  • Nishihara Y (1985) Comparative study of the effects of biphenyl and Kanechlor-400 on the respiratory and energy linked activities of rat liver mitochondria. Occup Environ Med 42:128–132. doi:10.1136/oem.42.2.128

    Article  CAS  Google Scholar 

  • Nishihara Y, Utsumi K (1987) 4-Chloro-4′-biphenylol as an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation. Biochem Pharmacol 36:3453–3457

    Article  CAS  Google Scholar 

  • Nishihara Y, Robertson LW, Oesch F, Utsumi K (1986) The effects of tetrachlorobiphenyls on the electron transfer reaction of isolated rat liver mitochondria. Life Sci 38:627–635. doi:10.1016/0024-3205(86)90056-1

    Article  CAS  Google Scholar 

  • Pavlidis P (2003) Using ANOVA for gene selection from microarray studies of the nervous system. Methods 31:282–289. doi:10.1016/S1046-2023(03)00157-9

    Article  CAS  Google Scholar 

  • Prochazkova J, Kabatkova M, Bryja V et al (2011) The interplay of the aryl hydrocarbon receptor and beta-catenin alters both AhR-dependent transcription and Wnt/beta-catenin signaling in liver progenitors. Toxicol Sci 122:349–360. doi:10.1093/toxsci/kfr129

    Article  CAS  Google Scholar 

  • Richter CA, Garcia-Reyero N, Martyniuk C et al (2011) Gene expression changes in female zebrafish (Danio rerio) brain in response to acute exposure to methylmercury. Environmental toxicology and chemistry / SETAC 30:301–308. doi:10.1002/etc.409

    Article  CAS  Google Scholar 

  • Salvi M, Toninello A (2001) Aroclor 1254 inhibits the mitochondrial permeability transition and release of cytochrome c: a possible mechanism for its in vivo toxicity. Toxicol Appl Pharmacol 176:92–100. doi:10.1006/taap.2001.9271

    Article  CAS  Google Scholar 

  • Samson JC, Shenker J (2000) The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquat Toxicol 48:343–354. doi:10.1016/S0166-445X(99)00044-2

    Article  CAS  Google Scholar 

  • Schiwy S, Bräunig J, Alert H et al (2014) A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos. Environ Sci Pollut Res Int. doi:10.1007/s11356-014-3185-0

    Google Scholar 

  • Schlezinger JJ, Struntz WDJ, Goldstone JV, Stegeman JJ (2006) Uncoupling of cytochrome P450 1A and stimulation of reactive oxygen species production by co-planar polychlorinated biphenyl congeners. Aquatic toxicology (Amsterdam, Netherlands) 77:422–432. doi:10.1016/j.aquatox.2006.01.012

    Article  CAS  Google Scholar 

  • Shelton DW, Goeger DE, Hendricks JD, Bailey GS (1986) Mechanisms of anti-carcinogenesis: the distribution and metabolism of aflatoxin B1 in rainbow trout fed aroclor 1254. Carcinogenesis 7:1065–1071. doi:10.1093/carcin/7.7.1065

    Article  CAS  Google Scholar 

  • Silkworth JB, Koganti A, Illouz K et al (2005) Comparison of TCDD and PCB CYP1A induction sensitivities in fresh hepatocytes from human donors, Sprague-Dawley rats, and rhesus monkeys and HepG2 cells. Toxicol Sci 87:508–519. doi:10.1093/toxsci/kfi261

    Article  CAS  Google Scholar 

  • Smyth GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:1–26. doi:10.2202/1544-6115.1027

    Article  Google Scholar 

  • Snape JR, Maund SJ, Pickford DB, Hutchinson TH (2004) Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic toxicology (Amsterdam, Netherlands) 67:143–154. doi:10.1016/j.aquatox.2003.11.011

    Article  CAS  Google Scholar 

  • Snell TW, Brogdon SE, Morgan MB (2003) Gene expression profiling in ecotoxicology. Ecotoxicology (London, England) 12:475–483

    Article  CAS  Google Scholar 

  • Straus DL, Chambers JE (1995) Inhibition of acetylcholinesterase and aliesterases of fingerling channel catfish by chlorpyrifos, parathion, and S,S,S-tributyl phosphorotrithioate (DEF). Aquat Toxicol 33:311–324. doi:10.1016/0166-445X(95)00024-X

    Article  CAS  Google Scholar 

  • Uzun FG, Kalender Y (2013) Chlorpyrifos induced hepatotoxic and hematologic changes in rats: the role of quercetin and catechin. Food Chem Toxicol 55:549–556. doi:10.1016/j.fct.2013.01.056

    Article  CAS  Google Scholar 

  • Van Aggelen G, Ankley GT, Baldwin WS et al (2010) Integrating omic technologies into aquatic ecological risk assessment and environmental monitoring: hurdles, achievements, and future outlook. Environ Health Perspect 118:1–5. doi:10.1289/ehp.0900985

    CAS  Google Scholar 

  • Villeneuve D, Volz DC, Embry MR et al (2014a) Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development. Environmental toxicology and chemistry / SETAC 33:158–169. doi:10.1002/etc.2403

    Article  CAS  Google Scholar 

  • Villeneuve DL, Crump D, Garcia-Reyero N et al (2014b) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320. doi:10.1093/toxsci/kfu199

    Article  CAS  Google Scholar 

  • Whitney K, Seidler F, Slotkin T (1995) Developmental neurotoxicity of chlorpyrifos: cellular mechanisms. Toxicol Appl Pharmacol 134:53–62

    Article  CAS  Google Scholar 

  • Xiao Y, Hsiao T-H, Suresh U et al (2014) A novel significance score for gene selection and ranking. Bioinformatics (Oxford, England) 30:801–807. doi:10.1093/bioinformatics/btr671

    Article  CAS  Google Scholar 

  • Yang L, Kemadjou JR, Zinsmeister C et al (2007) Transcriptional profiling reveals barcode-like toxicogenomic responses in the zebrafish embryo. Genome Biol 8:R227. doi:10.1186/gb-2007-8-10-r227

    Article  Google Scholar 

  • Yang L, Ho NY, Müller F, Strähle U (2010) Methyl mercury suppresses the formation of the tail primordium in developing zebrafish embryos. Toxicol Sci 115:379–390. doi:10.1093/toxsci/kfq053

    Article  CAS  Google Scholar 

  • Yang D, Lauridsen H, Buels K et al (2011) Chlorpyrifos-oxon disrupts zebrafish axonal growth and motor behavior. Toxicol Sci 121:146–159. doi:10.1093/toxsci/kfr028

    Article  CAS  Google Scholar 

  • Yen J, Donerly S, Levin ED, Linney EA (2011) Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval zebrafish. Neurotoxicol Teratol 33:735–741. doi:10.1016/j.ntt.2011.10.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was part of the research funding project DanTox (DanTox—a novel joint research project using zebrafish (Danio rerio) to identify specific toxicity and molecular modes of action of sediment-bound pollutants). The authors acknowledge financial support by the German Federal Ministry of Education and Research (BMBF grant 02WU1053) and data provision from the GENDarT2 project (BMBF grant AZ:0315190 B). The authors thank Thomas-Benjamin Seiler for improving the language. The authors thank Leonie Nüßer and Daniel Koske for their help with the interpretation of the microarrays.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Hausen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

List of all GO-groups and contained functional terms. A table of all significantly enriched GO-terms as well as their respective GO-groups for all three treatments. Table includes p-values and Benjamini-Hochberg corrected p-values of each term. (CSV 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hausen, J., Otte, J.C., Legradi, J. et al. Fishing for contaminants: identification of three mechanism specific transcriptome signatures using Danio rerio embryos. Environ Sci Pollut Res 25, 4023–4036 (2018). https://doi.org/10.1007/s11356-017-8977-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8977-6

Keywords

Navigation