Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 16, pp 14060–14070 | Cite as

Formetanate toxicity and changes in antioxidant enzyme system of Apis mellifera larvae

  • Martin Staroň
  • Rastislav Sabo
  • Anna Sobeková
  • Lucia Sabová
  • Jaroslav Legáth
  • Ľuboslava Lohajová
  • Peter Javorský
Research Article

Abstract

Substantial percentage of world food production depends on pollinating service of honeybees that directly depends on their health status. Among other factors, the success of bee colonies depends on health of developed larvae. The crucial phase of larval development is the first 6 days after hatching when a worker larva grows exponentially and larvae are potentially exposed to xenobiotics via diet. In the present study, we determined the lethal concentration LC50 (72 h) following single dietary exposure of honeybee larvae to formetanate under laboratory conditions, being also the first report available in scientific literature. Activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) were also measured in the homogenates of in vitro reared honeybee larvae after single formetanate exposure. Decreased specific activity of SOD and increased activities of CAT and GST suggest the induction of oxidative stress. Higher levels of thiobarbituric reactive species in all samples supported this fact. Comparing determined larval toxicity (LC50 of 206.01 mg a.i./kg diet) with adult toxicity data, we can suppose that the larvae may be less sensitive to formetanate than the adult bees.

Keywords

Honey bee larvae Enzymes Carbamate Dietary exposure 

Notes

Acknowledgements

Funding was provided by the Slovak Grant Agency VEGA (grant No. 1/0858/16 and No. 1/0176/16) and by the National Reference Laboratory for Pesticides of University of Veterinary Medicine and Pharmacy in Košice, Slovakia. The authors would like to thank Mgr. Tomáš Plichta for his help during the larvae rearing.

References

  1. Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology [Internet] [cited 2016 March 2] 23(3):324–334. doi: 10.1007/s10646-014-1190-1 Google Scholar
  2. Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225. doi: 10.1146/annurec-ento-112408-085356 CrossRefGoogle Scholar
  3. Aupinel P, Fortini D, Michaud B, Marolleau F, Tasei JN, Odoux JF (2007) Toxicity of dimethoate and fenoxycarb to honey bee brood (Apis mellifera), using a new in vitro standardized feeding method. Pest Manag Sci 63:1090–1094CrossRefGoogle Scholar
  4. Badiou-Bénéteau A, Carvalho SM, Brunet JL, Carvalho GA, Buleté A, Giroud B, Belzunces LP (2012) Development of biomarkers of exposure to xenobiotics in the honey bee Apis mellifera: application to the systemic insecticide thiamethoxam. Ecotox Environ Safe 82:22–31CrossRefGoogle Scholar
  5. Berenbaum MR, Johnson RM (2015) Xenobiotic detoxication pathways in honey bees. Curr Opin Insect Sci 10:51–58CrossRefGoogle Scholar
  6. Bielza P, Quinto V, Gravalos C, Fernandez E, Abelian JJ (2008) Impact of production system on development of insecticide resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 101:1685–1690CrossRefGoogle Scholar
  7. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  8. Bus JS, Gibson JE (1984) Paraquat: model for oxidant-initiated toxicity. Environ Health Persp 55:37–46CrossRefGoogle Scholar
  9. Carvalho SM, Belzunces LP, Carvalho GA, Jean-Luc Brunet JL, Badiou-Beneteau A (2013) Enzymatic biomarkers as tools to assess environmental quality: a case study of exposure of the honeybee Apis mellifera to insecticides. Environ Toxicol Chem 32(9):2117–2124CrossRefGoogle Scholar
  10. Cheung CCC, Zheng GJ, Li AMY, Richardson BJ, Lam PKS (2001) Relationship between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquatic toxicol 52:189–203CrossRefGoogle Scholar
  11. Claudianos C, Ranson H, Johnson RM, Biswas S, Schuler MA, Berenbaum MR, Feyereisen R, Oakeshott JG (2006) A deficit of detoxification enzymes: pesticide sensitivity and environmental response in the honeybee. Insect Mol Biol 15(5):615–636CrossRefGoogle Scholar
  12. Contreras J, Espinosa PJ, Quinto V, Abella J, Gravalos NC, Fernandez E, Dielza P (2010) Life-stage variation in insecticide resistance of the western flower thrips (Thysanoptera: Thripidae). J Econ Entomol 103:2164–2168CrossRefGoogle Scholar
  13. Corona M, Robinson GE (2006) Genes of the antioxidant system of the honey bee: annotation and phylogeny. Insect Mol Biol 15(5):687–701CrossRefGoogle Scholar
  14. Divito CB, Davies S, Masoudi S, Muhoro CN (2007) Relative stability of formamidine and carbamate groups in the bifunctional pesticide formetanate hydrochloride. J Agric Food Chem 55:5377–5382CrossRefGoogle Scholar
  15. Du Rand EE, Smit S, Beukes M, Apostolides Z, Pirk CWW, Nicolson SW (2015) Detoxication mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Sci Rep 5:11779. doi: 10.1038/srep11779 CrossRefGoogle Scholar
  16. European Food Safety Authority . 2006. Conclusion regarding the peer review of the pesticide risk assessment of the active substance formetanate. The EFSA Journal, [Internet]. [cited2016 Oct 10] 4(6):RN-69, 1–78 Available from: doi: 10.2903/j.efsa.2006.69r
  17. Fast PG (1964) Insect lipids: a review. Mem Entomol Soc Can 37:1–50Google Scholar
  18. Flohé L, Ötting F (1984) SOD assays. Method Enzymol 105:93–104CrossRefGoogle Scholar
  19. Gómez-Ramos MM, García-Valcárcel AI, Tadeo JL, Fernández-Alba AR, Hernando MD (2016) Screening of environmental contaminants in honey bee wax comb using gas chromatography–high-resolution time-of-flight mass spectrometry. Environ Sci Pollut Res 23:4609. doi: 10.1007/s11356-015-5667-0 CrossRefGoogle Scholar
  20. Guillén J, Navarro M, Bielza P (2014) Cross-resistance and baseline susceptibility of spirotetramat in Frankliniella occidentalis (Thysanoptera: Thripidae). J Econ Entomol 107(3):1239–1244CrossRefGoogle Scholar
  21. Gutteridge JMC (1984) Ferrous ion-EDTA-stimulated phospholipid peroxidation. Biochem J 224:697–701CrossRefGoogle Scholar
  22. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione-S-transferases. Method Enzymol 77:398–405CrossRefGoogle Scholar
  23. Hadjidemetriou DG, Iwata Y, Gunther FA (1985) Analysis and dissipation of dislodgable residues of acephate, dimethoate and formetanate hydrochloride on citrus foliage. Pestic Sci 16:302–310CrossRefGoogle Scholar
  24. Hardstone MC, Scott JG (2010) Is Apis mellifera more sensitive to insecticides than other insects? Pest Manag Sci 66:1171–1180CrossRefGoogle Scholar
  25. Hardstone MC, Huang X, Harrington LC, Scott JG (2010) Differences in development, glycogen, and lipid content associated with cytochrome P450-mediated permethrin resistance in Culex pipiens Quinquefasciatus (Diptera: Culicidae). J Med Entomol 47:188–198CrossRefGoogle Scholar
  26. Hladun KR, Kaftanoglu O, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium on development, survival, and accumulation in the honeybee (Apis mellifera L.) Environ Toxicol Chem 32(11):2584–2592CrossRefGoogle Scholar
  27. Hodgson EK, Fridovich I (1975) The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of enzyme. Biochemistry 14(24):5294–5949CrossRefGoogle Scholar
  28. Hrassnigg N, Crailsheim K (2005) Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36:255–277CrossRefGoogle Scholar
  29. Hu RW, Petay V, Fournier J (1996) Determination of formetanate hydrochloride in strawberries. J Agric Food Chem 44:181–184CrossRefGoogle Scholar
  30. Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407(6802):390–395CrossRefGoogle Scholar
  31. Human H, Archer CR, du Rand EE, Pirk CWW, Nicolson SW (2014) Resistance of developing honeybee larvae during chronic exposure to dietary nicotine. J Insect Physiol 69:74–79CrossRefGoogle Scholar
  32. Johnson RM, Ellis MD, Mullin CA, Frazier M (2010) Pesticides and honey bee toxicity—USA. Apidologie 41(3):312–331CrossRefGoogle Scholar
  33. Kuhr RJ (1970) Metabolism of carbamate insecticide chemicals in plants and insects. J Agric Food Chem 18(6):1023–1103CrossRefGoogle Scholar
  34. Mittapalli O, Neal JJ, Shukle RH. 2007. Tissue and life stage specificity of glutathione S-transferase expression in the Hessian fly, Mayetiola destructor: implications for resistance to host allelochemicals. J Insect Sci [Internet]. [cited 2016 March 2]; 7: 1–13. Available from: http://jinsectscience.oxfordjournals.org/content/jis/7/1/20.full.pdf  10.1673/031.007.2001
  35. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, van Engelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5:e9754CrossRefGoogle Scholar
  36. Nielsen SA, Brødsgaard CJ, Hansen H. 2000. Effects on detoxification enzymes in different life stages of honeybees (Apis mellifera L., Hymenoptera: Apidae) treated with a synthetic pyrethroid (flumethrin). Altern Lab Anim 28(3):437–443 [Abstract]Google Scholar
  37. Niemann RA (1993) Determination of formetanate hydrochloride in selected fruits by coupled-column cation exchange liquid chromatography. J AOAC Int 76:1362–1368Google Scholar
  38. OECD. 1998. Guideline for the Testing of Chemicals No. 213: Honey bee, Acute Oral Toxicity Test, Section 2; Effects on Biotic Systems, OECD, Paris  10.1787/9789264070165-en
  39. OECD. 2013. Guideline for the Testing of Chemicals No. 237: Honey Bees (Apis mellifera) Larval Toxicity Test, Single Exposure, Section 2: Effects on Biotic Systems  10.1787/9789264203723-en
  40. OECD. 2016. Guidance Document on Honey Bee Larval Toxicity Test following Repeated Exposure No. 239, [Internet]. [cited 2016 Oct 10] Available at: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=ENV/JM/MONO(2016)34&docLanguage=En.
  41. Oliveira RA, Roat TC, Carvalho SM, Malaspina O (2014) Side-effects of thiamethoxam on the brain and midgut of the Africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ Toxicol 29:1122–1133CrossRefGoogle Scholar
  42. Papadopoulos AI, Polemitou I, Laifi P, Yiangou A, Tananaki C (2004) Glutathione S-transferase in the developmental stages of the insect Apis mellifera macedonica. Comp Biochem Physiol C 139:87–92CrossRefGoogle Scholar
  43. Pardini RS (1995) Toxicity of oxygen from naturally occurring redox-active pro-oxidant. Arch Insect Biochem 29:101–118CrossRefGoogle Scholar
  44. Park YC, Lee S, Cho MH. 2014. The Simplest Flowchart Stating the Mechanisms for Organic Xenobiotics-induced Toxicity: Can it possibly be accepted as a “Central Dogma” for Toxic Mechanisms? Toxicol Res [Internet]. [cited 2016 May 12]; 30(3): 179–184. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4206744/pdf/toxicr-30-179.pdf doi:  10.5487/TR.2014.30.3.179
  45. Pisa LW, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Downs A, Goulson D, Kreutzweiser DP, Krupke C, Liess M, McField M, Morrissey CA, Noome DA, Settele J, Simon-Delso N, Stark JD, Van der Sluijs JP, Van Dyck P, Wiemers M (2015) Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res 22:68. doi: 10.1007/s11356-014-3471-x CrossRefGoogle Scholar
  46. Porrini C, Sabatini AG, Girotti S, Fini F, Monaco L, Celli G, Bortolotti L, Ghini S (2003) The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. B Insectol 56(1):147–152Google Scholar
  47. Pracasam A, Sethupathy S, Lalitha S (2001) Plasma and RBCs antioxidant status in occupational male pesticide sprayers. Clin Chim Acta 310:107–112CrossRefGoogle Scholar
  48. Sies H (1993) Strategies of antioxidant defence. Eur J Biochem 215:213–219CrossRefGoogle Scholar
  49. Sizer IW, Beers RF Jr (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–139Google Scholar
  50. Sobeková A, Holovská K, Lenártová V, Flešárová S, Javorský P (2009) The another toxic effect of carbamate insecticides. Acta Biol Hung 60(1):45–54CrossRefGoogle Scholar
  51. Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20(11):2482–2486CrossRefGoogle Scholar
  52. Tavares DA, Roat TC, Carvalho SM, Silva-Zacarin ECM, Malaspina O (2015) In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135:370–378CrossRefGoogle Scholar
  53. Weirich GF, Collins AM, Williams VP. 2002. Antioxidant enzymes in the honey bee, Apis mellifera. Apidologie [Internet]. [cited 2016 April 7]; 33: 3–14. Available from: https://hal.archives-ouvertes.fr/hal-00891910 doi: DOI:  10.1051/apido:2001001
  54. Yang EC, Chang HC, Wu WY, Chen YW (2012) Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7:e49472CrossRefGoogle Scholar
  55. Yu SJ, Robinson FA, Nation JL (1984) Detoxication capacity in the honeybee, Apis mellifera L. Pestic Biochem Physiol 22:360–368CrossRefGoogle Scholar
  56. Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6:e14720CrossRefGoogle Scholar
  57. Zhu W, Schmehl DR, Mullin CA, Frazier JL (2014) Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS One 9(1):e77547CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Animal Production Research Centre NitraInstitute of Apiculture Liptovský HrádokLiptovský HrádokSlovakia
  2. 2.Department of ToxicologyThe University of Veterinary Medicine and Pharmacy in KošiceKošiceSlovakia
  3. 3.Department of Chemistry, Biochemistry and BiophysicsThe University of Veterinary Medicine and Pharmacy in KošiceKošiceSlovakia
  4. 4.Department of PharmacologyThe University of Veterinary Medicine and Pharmacy in KošiceKošiceSlovakia
  5. 5.Department of Chemistry, Biochemistry and BiophysicsThe University of Veterinary Medicine and Pharmacy in KošiceKošiceSlovakia
  6. 6.Institute of Animal Physiology SASKošiceSlovakia

Personalised recommendations