Skip to main content
Log in

Removal of selected pesticides from groundwater by membrane distillation

  • Water: From Pollution to Purification
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The removal of five selected pesticide compounds in a brackish model groundwater solution was examined using a bench scale direct contact membrane distillation (DCMD) system. It was found that the rejection rate of the pesticides in DCMD is mainly influenced by its properties. Compounds with low hydrophobic characteristics and low vapour pressure showed a high rejection rate (70–99%), whereas compounds with a high vapour pressure or high hydrophobicity (LogD) showed a reduced rejection (30–50%) at a water recovery of 75%. The influence of groundwater feed solution contents such as the presence of organics (humic acid) and inorganic ions (Na+, Ca2+, Mg2+, Cl and SO4 2−) as well as feed temperature (40, 55 and 70 °C) on the rejection of the pesticides in DCMD operation was also evaluated. The results showed that the presence of inorganic ions and organics in the feed solution influences the pesticides rejection in DCMD operation to a minor degree. In contrast, reduced rejection of pesticides with high vapour pressure was observed. A rapid small-scale column test (RSSCT) was carried out to study the removal of any remaining substances in the permeate by adsorption onto granular activated carbon (GAC). RSSCT showed promising performance of GAC as a post-treatment option.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkhudhiri A, Darwish N, Hilal N (2012) Membrane distillation: a comprehensive review. Desalination 287:2–18. doi:10.1016/j.desal.2011.08.027

    Article  CAS  Google Scholar 

  • Bhushan C, Bhardwaj A, Misra SS (2013) State of pesticide regulations in India. Centre for Science and Environment, New Delhi

    Google Scholar 

  • BIS (2012) Indian standard drinking water - specification (second revision), vol 2. Bureau of Indian Standards, New Delhi

    Google Scholar 

  • Bonné PAC, Beerendonk EF, van der Hoek JP, Hofman JAMH (2000) Retention of herbicides and pesticides in relation to aging of RO membranes. Desalination 132:189–193. doi:10.1016/S0011-9164(00)00148-X

    Article  Google Scholar 

  • Broséus R, Vincent S, Aboulfadl K, Daneshvar A, Sauvé S, Barbeau B, Prévost M (2009) Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res 43:4707–4717. doi:10.1016/j.watres.2009.07.031

    Article  CAS  Google Scholar 

  • Chakraborti D, Das B, Murrill MT (2011) Examining India’s groundwater quality management. Environmental Science & Technology 45:27–33. doi:10.1021/es101695d

    Article  CAS  Google Scholar 

  • Crittenden JC, Trussell RR, Hand DW, Howe KJ, Tchobanoglous G (2005) WaterTreatment: principles and design, 2nd edn. John Wiley & Sons, Hoboken

    Google Scholar 

  • Derco J, Dudáš J, Valičková M, Šimovičová K, Kecskés J (2015) Removal of micropollutants by ozone based processes. Chem Eng Process Process Intensif In Press, Corrected Proof. Doi:10.1016/j.cep.2015.03.014

  • Drioli E, Ali A, Macedonio F (2015) Membrane distillation: recent developments and perspectives. Desalination 356:56–84. doi:10.1016/j.desal.2014.10.028

    Article  CAS  Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162:306–325. doi:10.1016/j.jenvman.2015.07.020

    Article  CAS  Google Scholar 

  • Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S (2012) Fluoride in drinking water and defluoridation of water. Chem Rev 112:2454–2466

    Article  CAS  Google Scholar 

  • Jeong S, Bae H, Naidu G, Jeong D, Lee S, Vigneswaran S (2013) Bacterial community structure in a biofilter used as a pretreatment for seawater desalination. Ecol Eng 60:370–381

  • Kennedy AM, Reinert AM, Knappe DRU, Ferrer I, Summers RS (2015) Full- and pilot-scale GAC adsorption of organic micropollutants. Water Res 68:238–248. doi:10.1016/j.watres.2014.10.010

    Article  CAS  Google Scholar 

  • Köck-Schulmeyer M, Ginebreda A, Postigo C, Garrido T, Fraile J, López de Alda M, Barceló D (2014) Four-year advanced monitoring program of polar pesticides in groundwater of Catalonia (NE-Spain). Sci Total Environ 470–471:1087–1098. doi:10.1016/j.scitotenv.2013.10.079

    Article  CAS  Google Scholar 

  • Kolpin DW, Thurman EM, Linhart SM (2000) Finding minimal herbicide concentrations in ground water? Try looking for their degradates. Sci Total Environ 248:115–122. doi:10.1016/S0048-9697(99)00535-5

    Article  CAS  Google Scholar 

  • Koschikowski J, Wieghaus M, Rommel M, Ortin VS, Suarez BP, Betancort Rodríguez JR (2009) Experimental investigations on solar driven stand-alone membrane distillation systems for remote areas. Desalination 248:125–131. doi:10.1016/j.desal.2008.05.047

    Article  CAS  Google Scholar 

  • Lapworth DJ, Gooddy DC (2006) Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environ Pollut 144:1031–1044. doi:10.1016/j.envpol.2005.12.055

    Article  CAS  Google Scholar 

  • Lari SZ, Khan NA, Gandhi KN, Meshram TS, Thacker NP (2014) Comparison of pesticide residues in surface water and ground water of agriculture intensive areas. J Environ Health Sci Eng 12:11. doi:10.1186/2052-336X-12-11

    Article  CAS  Google Scholar 

  • Lattemann S, Höpner T (2008) Environmental impact and impact assessment of seawater desalination. Desalination 220:1–15. doi:10.1016/j.desal.2007.03.009

    Article  CAS  Google Scholar 

  • Leistra M, Boesten JJTI (1989) Pesticide contamination of groundwater in western Europe. Agric Ecosyst Environ 26:369–389. doi:10.1016/0167-8809(89)90018-2

    Article  CAS  Google Scholar 

  • Mailler R et al (2015) Study of a large scale powdered activated carbon pilot: removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res 72:315–330. doi:10.1016/j.watres.2014.10.047

    Article  CAS  Google Scholar 

  • Naidu G, Jeong S, Choi Y, Jang E, Hwang T-M, Vigneswaran S (2014) Application of vacuum membrane distillation for small scale drinking water production. Desalination 354:53–61

  • Naidu G, Jeong S, Vigneswaran S, Hwang T-M, Choi Y-J, Kim S-H (2015) A review on fouling of membrane distillation. Desalin Water Treat 57(22):10052–10076

  • Naidu G, Jeong S, Choi Y, Vigneswaran S (2017) Membrane distillation for wastewater reverse osmosis concentrate treatment with water reuse potential. J Membr Sci 524:565–575

  • Pérez-González A, Urtiaga AM, Ibáñez R, Ortiz I (2012) State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res 46:267–283. doi:10.1016/j.watres.2011.10.046

    Article  CAS  Google Scholar 

  • Plakas KV, Karabelas AJ, Wintgens T, Melin T (2006) A study of selected herbicides retention by nanofiltration membranes - the role of organic fouling. J Membr Sci 284:291–300. doi:10.1016/j.memsci.2006.07.054

    Article  CAS  Google Scholar 

  • Plattner J, Naidu G, Wintgens T, Vigneswaran S, Kazner C (2017) Fluoride removal from groundwater using direct contact membrane distillation (DCMD) and vacuum enhanced DCMD (VEDCMD). Sep Purif Technol. doi:10.1016/j.seppur.2017.03.003

    Article  Google Scholar 

  • Qtaishat MR, Banat F (2013) Desalination by solar powered membrane distillation systems. Desalination 308:186–197. doi:10.1016/j.desal.2012.01.021

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B (2006) The challenge of Micropollutants in aquatic systems. Science 313:1072–1077. doi:10.1126/science.1127291

    Article  CAS  Google Scholar 

  • Schwarzenbach RP, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136. doi:10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  • Štajnbaher D, Zupančič-Kralj L (2003) Multiresidue method for determination of 90 pesticides in fresh fruits and vegetables using solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A 1015:185–198. doi:10.1016/S0021-9673(03)01211-1

    Article  CAS  Google Scholar 

  • Summers S, Knappe DRU, Snoeyink VL (2011) Water Quality & Treatment. Adsorption of organic compounds by activated carbon. McGraw-Hill, New York

    Google Scholar 

  • Wang P, Thai-Shung C (2015) Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J Membr Sci 474:39–56. doi:10.1016/j.memsci.2014.09.016

    Article  CAS  Google Scholar 

  • Wijekoon KC, Hai FI, Kang J, Price WE, Cath TY, Nghiem LD (2014a) Rejection and fate of trace organic compounds (TrOCs) during membrane distillation. J Membr Sci 453:636–642. doi:10.1016/j.memsci.2013.12.002

    Article  CAS  Google Scholar 

  • Wijekoon KC et al (2014b) A novel membrane distillation - thermophilic bioreactor system: biological stability and trace organic compound removal. Bioresour Technol 159:334–341. doi:10.1016/j.biortech.2014.02.088

    Article  CAS  Google Scholar 

  • Wu C, Luo Y, Gui T, Huang Y (2014) Concentrations and potential health hazards of organochlorine pesticides in shallow groundwater of Taihu Lake region, China. Sci Total Environ 470–471:1047–1055. doi:10.1016/j.scitotenv.2013.10.056

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137. doi:10.1016/j.scitotenv.2014.12.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the FP7 Project Water4India funded by the European Commission (GA No. 308496). Julia Plattner gratefully acknowledges the support by UTS through an International Research Scholarship (UTS IRS 165924). The experiment materials and analysis for this study were provided through the funding of CRC Care (4.1.12.11/12). We would also like to thank the Technologiezentrum Wasser (TZW) in Karlsruhe, in particular Dr. Frank Sacher, for the analytical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saravanamuthu Vigneswaran.

Additional information

Responsible editor: Ester Heath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plattner, J., Kazner, C., Naidu, G. et al. Removal of selected pesticides from groundwater by membrane distillation. Environ Sci Pollut Res 25, 20336–20347 (2018). https://doi.org/10.1007/s11356-017-8929-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8929-1

Keywords

Navigation