Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10283–10293 | Cite as

Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies

  • Giovanni Benelli
  • Marimuthu Govindarajan
  • Sengamalai Senthilmurugan
  • Periasamy Vijayan
  • Shine Kadaikunnan
  • Naiyf S. Alharbi
  • Jamal M. Khaled
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

Mosquitoes threaten the lives of humans, livestock, pets and wildlife around the globe, due to their ability to vector devastating diseases. Aglaia elaeagnoidea, commonly known as Priyangu, is widely employed in Asian traditional medicine and pest control. Medicinal activities include anti-inflammatory, analgesic, anticancer, and anesthetic actions. Flavaglines, six cyclopenta[b]benzofurans, a cyclopenta[bc]benzopyran, a benzo[b]oxepine, and an aromatic butyrolactone showed antifungal properties, and aglaroxin A and rocaglamide were effective to control moth pests. Here, we determined the larvicidal action of A. elaeagnoidea leaf aqueous extract. Furthermore, we focused on Priyangu-mediated synthesis of Ag nanoparticles toxic to Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. The plant extract and the nanolarvicide were tested on three mosquito vectors, following the WHO protocol, as well as on three non-target mosquito predators. Priyangu-synthesized Ag nanoparticles were characterized by spectroscopic (UV, FTIR, XRD, and EDX) and microscopic (AFM, SEM, and TEM) analyses. Priyangu extract toxicity was moderate on Cx. quinquefasciatus (LC50 246.43; LC90 462.09 μg/mL), Ae. aegypti (LC50 229.79; LC90 442.71 μg/mL), and An. stephensi (LC50 207.06; LC90 408.46 μg/mL), respectively, while Priyangu-synthesized Ag nanoparticles were highly toxic to Cx. quinquefasciatus (LC50 24.91; LC90 45.96 μg/mL), Ae. aegypti (LC50 22.80; LC90 43.23 μg/mL), and An. stephensi (LC50 20.66; LC90 39.94 μg/mL), respectively. Priyangu extract and Ag nanoparticles were found safer to non-target larvivorous fishes, backswimmers, and waterbugs, with LC50 ranging from 1247 to 37,254.45 μg/mL, if compared to target pests. Overall, the current research represents a modern approach integrating traditional botanical pesticides and nanotechnology to the control of larval populations of mosquito vectors, with negligible toxicity against non-target including larvivorous fishes, backswimmers, and waterbugs.

Keywords

AFM Botanical pesticides Herbal remedies Priyangu Non-target fish TEM 

Notes

Acknowledgements

Prof. Garrigues and five anonymous reviewers kindly improved our manuscript. This Project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Centre.

References

  1. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89:249–256CrossRefGoogle Scholar
  2. Bangajavalli S, Ramasubramanian V (2015) GC-MS analysis of bioactive components of Aglaia elaeagnoidea (Juss.) Benth. European J Biomed Pharm Sci 2(4):1248–1260Google Scholar
  3. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216CrossRefGoogle Scholar
  4. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  5. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  6. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  7. Benelli G (2016b) Plant-mediated synthesis of nanoparticles: a newer and safer tool against mosquito-borne diseases? Asia Pac J Trop Biomed 6:353–354CrossRefGoogle Scholar
  8. Benelli G (2016c) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer—a brief review. Enzyme Microbial Technol 95:58–68. doi: 10.1016/j.enzmictec.2016.08.022
  9. Benelli G (2017) Commentary: Data analysis in bionanoscience—issues to watch for. J Clust Sci 28:11–14Google Scholar
  10. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  11. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137CrossRefGoogle Scholar
  12. Benelli G, Govindarajan M, Rajeswary M, Senthilmurugan S, Vijayan P, Alharbi NS, Kadaikunnan S, Khaled JM (2017a) Larvicidal activity of Blumea eriantha essential oil and its components against six mosquito species, including Zika virus vectors: the promising potential of (4E,6Z)-allo-ocimene, carvotanacetone and dodecyl acetate. Parasitol Res 116:1175–1188. doi: 10.1007/s00436-017-5395-0
  13. Benelli G, Rajeswary M, Govindarajan M (2017b) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Poll Res. doi: 10.1007/s11356-016-8146-3
  14. Deo PG, Hasan SB, Majumdar SK (1988) Toxicity and suitability of some insecticides for household use. Int Pest Control 30:118–129Google Scholar
  15. Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Srimal RC, Tandon JS (1973) Screening of Indian plants for biological activity. IV Indian J Exp Biol 11:43–54Google Scholar
  16. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529CrossRefGoogle Scholar
  17. Engelmeier D, Hadacek F, Pacher T, Vajrodaya S, Greger H (2000) Cyclopenta[b]benzofurans from Aglaia species with pronounced antifungal activity against rice blast fungus (Pyricularia grisea). J Agric Food Chem 48(4):1400–1404CrossRefGoogle Scholar
  18. Finney DJ (1971) Probit analysis, 3rd edn. Cambridge University Press, UKGoogle Scholar
  19. Goodsell DS (2004) Bionanotechnology: lessons from nature. Wiley, HobokenCrossRefGoogle Scholar
  20. Govindarajan M, Benelli G (2016a) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Parasitol Res 115:925–935CrossRefGoogle Scholar
  21. Govindarajan M, Benelli G (2016b) One-pot green synthesis of silver nanocrystals using Hymenodictyon orixense: a cheap and effective tool against malaria, chikungunya and Japanese encephalitis mosquito vectors? RSC Adv 6:59021–59029CrossRefGoogle Scholar
  22. Govindarajan M, Benelli G (2016c) One-pot fabrication of silver nanocrystals using Ormocarpum cochinchinense: biophysical characterization of a potent mosquitocidal and toxicity on non-target mosquito predators. J Asia Pac Entomol 19(2):377–385CrossRefGoogle Scholar
  23. Govindarajan M, Hoti SL, Benelli G (2016d) Facile fabrication of eco-friendly nano-mosquitocides: biophysical characterization and effectiveness on neglected tropical mosquito vectors. Enzyme Microbial Technol 95:155–163CrossRefGoogle Scholar
  24. Govindarajan M, Hoti SL, Rajeswary M, Benelli G (2016b) One-step synthesis of poly-dispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol Res 115(7):2685–2695CrossRefGoogle Scholar
  25. Govindarajan M, Khater HF, Panneerselva C, Benelli G (2016a) One-pot fabrication of silver nanocrystals using Nicandra physalodes: a novel route for mosquito vector control with moderate toxicity on non-target water bugs. Res Vet Sci 107:95–101CrossRefGoogle Scholar
  26. Govindarajan M, Nicoletti M, Benelli G (2016e) Bio-physical characterization of poly-dispersed silver nanocrystals fabricated using Carissa spinarum: a potent tool against mosquito vectors. J Clust Sci 27:745–761CrossRefGoogle Scholar
  27. Govindarajan M, Rajeswary M, Muthukumaran U, Hoti SL, Khater HF, Benelli G (2016c) Single-step biosynthesis and characterization of silver nanoparticles using Zornia diphylla leaves: a potent eco-friendly tool against malaria and arbovirus vectors. J Photochem Photobiol B 161:482–489CrossRefGoogle Scholar
  28. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.) Parasitol Res 112:1451–1459CrossRefGoogle Scholar
  29. Jaganathan A, Murugan K, Panneerselvam C, Madhiyazhagan P, Dinesh D, Vadivalagan C, Aziz AT, Chandramohan B, Suresh U, Rajaganesh R, Subramaniam J, Nicoletti M, Higuchi A, Alarfaj AA, Munusamy MA, Kumar S, Benelli G (2016) Earthworm-mediated synthesis of silver nanoparticles: a potent tool against hepatocellular carcinoma, pathogenic bacteria, Plasmodium parasites and malaria mosquitoes. Parasitol Int 65:276–284CrossRefGoogle Scholar
  30. Kannan P, John SA (2008) Synthesis of mercaptothiadiazole functionalized gold nanoparticles and their self-assembly on Au substrates. Nanotechnology 19:085602 (pp. 10)CrossRefGoogle Scholar
  31. Koul O, Kaur H, Goomber S, Wahab S (2004) Bioefficacy and mode of action of rocaglamide from Aglaia elaeagnoidea (syn. A. roxburghiana) against gram pod borer, Helicoverpa armigera (Hübner). J Appl Entomol 128:177–181CrossRefGoogle Scholar
  32. Koul O, Singh G, Singh R, Multani JS (2005) Bioefficacy and mode-of-action of aglaroxin A from Aglaia elaeagnoidea (syn. A. roxburghiana) against Helicoverpa armigera and Spodoptera litura. Entomol Exp Appl 114:197–204CrossRefGoogle Scholar
  33. Kumar S, Viney L, Deepti P (2015) Green synthesis of therapeutic nanoparticles: an expanding horizon. Nanomedicine 10:2451–2471CrossRefGoogle Scholar
  34. Luo LB, Yu SH, Qian HS, Zhou T (2005) Large-scale fabrication of flexible silver/cross-linked poly (vinyl alcohol) coaxial nanocables by a facile solution approach. J Am Chem Soc 127:2822–2823CrossRefGoogle Scholar
  35. Mahesh Kumar P, Murugan K, Madhiyazhagan P, Kovendan K, Amerasan D, Chandramohan B, Dinesh D, Suresh U, Nicoletti M, Saleh Alsalhi M, Devanesan S, Wei H, Kalimuthu K, Hwang JS, Lo Iacono A, Benelli G (2016) Biosynthesis, characterization and acute toxicity of Berberis tinctoria fabricated silver nanoparticles against the Asian tiger mosquito, Aedesal bopictus, and the mosquito predators Toxorhynchites splendens and Mesocyclops thermocyclopoides. Parasitol Res 115:751–759CrossRefGoogle Scholar
  36. Mehlhorn H (2015) (Ed.) Encyclopedia of parasitology, fourth ed. Springer, New York, p. 893Google Scholar
  37. Mehlhorn H 2016 (Ed) Nanoparticles in the fight against parasites. Parasitol Res Monographs vol. 8, Springer, Berlin, New YorkGoogle Scholar
  38. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265CrossRefGoogle Scholar
  39. Murugan K, Aamina LM, Panneerselvam C, Dinesh D, Suresh U, Subramaniam J, Madhiyazhagan P, Hwang JS, Wang L, Nicoletti M, Benelli G (2015a) Aristolochia indica green-synthesized silver nanoparticles: a sustainable control tool against the malaria vector Anopheles stephensi? Res Vet Sci 102:127–135CrossRefGoogle Scholar
  40. Murugan K, Dinesh D, Jenil Kumar P, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Mehlhorn H, Benelli G (2015c) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654CrossRefGoogle Scholar
  41. Murugan K, Dinesh D, Paulpandi M, Dakhellah Meqbel Althbyani A, Subramaniam J, Madhiyazhagan P, Wang L, Suresh U, Mahesh Kumar P, Mohan J, Rajaganesh R, Wei H, Kalimuthu K, Parajulee MN, Mehlhorn H, Benelli G (2015e) Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:4349–4361CrossRefGoogle Scholar
  42. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, Roni M, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A, Kumar S, Perumalsamy H, Ahn JY, Benelli G (2015d) Rapid biosynthesis of silver nanoparticles using Crotalaria verrucosa leaves against the dengue vector Aedes aegypti: what happens around? An analysis of dragonfly predatory behavior after exposure at ultra-low doses. Nat Prod Res doi:  10.1080/14786419.2015.1074230
  43. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015b) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res 2:17053–17064CrossRefGoogle Scholar
  44. Muthukumaran U, Govindarajan M, Rajeswary M (2015a) Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitol Res 114(12):4385–4395CrossRefGoogle Scholar
  45. Muthukumaran U, Govindarajan M, Rajeswary M (2015b) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114(5):1817–1827CrossRefGoogle Scholar
  46. Muthukumaran U, Govindarajan M, Rajeswary M (2015c) Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 114(3):989–999CrossRefGoogle Scholar
  47. Nair PM, Park SY, Lee SW, Choi J (2011) Differential expression of ribosomal protein gene, gonadotrophin releasing hormone gene and Balbiani ring protein gene in silver nanoparticles exposed Chironomus riparius. Aquat Toxicol 101:31–37CrossRefGoogle Scholar
  48. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012a) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecillia reticulata. Parasitol Res 111:555–562CrossRefGoogle Scholar
  49. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012b) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822CrossRefGoogle Scholar
  50. Priyadarshini A, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang JS, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111:997–1006CrossRefGoogle Scholar
  51. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  52. Rajasekharreddy P, Rani PU (2014) Biofabrication of Ag nanoparticles using Sterculia foetida L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. Mater Sci Eng C Mater Biol Appl 39:203–212CrossRefGoogle Scholar
  53. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88CrossRefGoogle Scholar
  54. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and anti-microbial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622CrossRefGoogle Scholar
  55. Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99:115–118CrossRefGoogle Scholar
  56. Sivapriyajothi S, Mahesh Kumar P, Kovendan K, Subramaniam J, Murugan K (2014) Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi. J Entomol Acarol Res 46:1787CrossRefGoogle Scholar
  57. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499CrossRefGoogle Scholar
  58. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Dinesh D, Mahesh Kumar P, Chandramohan B, Suresh U, Rajaganesh R, Saleh Alsalhi M, Devanesan S, Nicoletti M, Canale A, Benelli G (2016) Multipurpose effectiveness of Couroupita guianensis-synthesized gold nanoparticles: high antiplasmodial potential, field efficacy against malaria vectors and synergy with Aplocheilus lineatus predators. Environ Sci Pollut Res 23:7543–7558CrossRefGoogle Scholar
  59. Subramaniam J, Murugan K, Panneerselvam C, Kovendan K, Madhiyazhagan P, Kumar PM, Dinesh D, Chandramohan B, Suresh U, Nicoletti M, Higuchi A, Hwang JS, Kumar S, Alarfaj AA, Munusamy MA, Messing RH, Benelli G (2015) Eco-friendly control of malaria and arbovirus vectors using the mosquitofish Gambusia affinis and ultra-low dosages of Mimusops elengi-synthesized silver nanoparticles: towards an integrative approach? Environ Sci Pollut Res Int 22:20067–20083CrossRefGoogle Scholar
  60. Suganya S, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using Murraya koenigii leaf extract against Anopheles stephensi and Aedes aegypti. Parasitol Res 112:1385–1397CrossRefGoogle Scholar
  61. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M et al (2015) Green synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res 114:3315–3325CrossRefGoogle Scholar
  62. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562CrossRefGoogle Scholar
  63. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee J (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246CrossRefGoogle Scholar
  64. Veerakumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085CrossRefGoogle Scholar
  65. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014a) Mosquito larvicidal properties of silver nanoparticles synthesized using Heliotropium indicum (Boraginaceae) against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(6):2363–2373CrossRefGoogle Scholar
  66. Veerakumar K, Govindarajan M, Rajeswary M, Muthukumaran U (2014b) Low-cost and eco-friendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(5):1775–1785CrossRefGoogle Scholar
  67. Velayutham K, Rahuman AA, Rajakumar G, Roopan SM, Elango G, Kamaraj C, Marimuthu S, Santhoshkumar T, Iyappan M, Siva C (2013) Larvicidal activity of green synthesized silver nanoparticles using bark aqueous extract of Ficus racemosa against Culex quinquefasciatus and Culex gelidus. Asian Pac J Trop Med 6(2):95–101CrossRefGoogle Scholar
  68. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240CrossRefGoogle Scholar
  69. Vincent S, Kovendan K, Chandramohan B, Kamalakannan S, Mahesh Kumar P, Vasugi C, Praseeja C, Subramaniam J, Govindarajan M, Murugan K, Benelli G (2017) Swift fabrication of silver nanoparticles using Bougainvillea glabra: potential against the Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). J Cluster Sci  10.1007/s10876-016-1038-3
  70. Vivek R, Thangam R, Muthuchelian K, Gunasekaran P, Kaveri K, Kannan S (2012) Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and its in vitro cytotoxic effect on MCF-7 cells. Process Biochem 47:2405–2410CrossRefGoogle Scholar
  71. Ward M, Benelli G (2017) Avian and simian malaria: do they have a cancer connection? Parasitol Res 116(3):839–845Google Scholar
  72. Whiteman SC, Yang Y, Jones JM, Spiteri MA (2008) FTIR spectroscopic analysis of sputum: preliminary findings on a potential novel diagnostic marker for COPD. Ther Adv Respir Dis 2:23–31CrossRefGoogle Scholar
  73. WHO (2005) Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/ 2005:13Google Scholar
  74. WHO (2012) Handbook for integrated vector management. World Health Organization, GenevaGoogle Scholar
  75. Yugandhar P, Savithramma N (2016) Biosynthesis, characterization and antimicrobial studies of green synthesized silver nanoparticles from fruit extract of Syzygium alternifolium (Wt.) Walp. an endemic, endangered medicinal tree taxon. Appl Nanosci 6:223–233CrossRefGoogle Scholar
  76. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676CrossRefGoogle Scholar
  77. Zhang W, Chen Z, Liu H, Zhang L, Gao P, Li D (2011) Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila. Colloids Surf B Biointerfaces 88:196–201CrossRefGoogle Scholar
  78. Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Giovanni Benelli
    • 1
  • Marimuthu Govindarajan
    • 2
  • Sengamalai Senthilmurugan
    • 2
  • Periasamy Vijayan
    • 2
  • Shine Kadaikunnan
    • 3
  • Naiyf S. Alharbi
    • 3
  • Jamal M. Khaled
    • 3
  1. 1.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly
  2. 2.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  3. 3.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations