Abstract
To assess the impact of nitrogen (N) pollutants on forest ecosystems, the role of the interactions in the canopy needs to be understood. A great number of studies have addressed this issue in heavily N-polluted regions in north and central Europe. Much less information is available for the Iberian Peninsula, and yet this region is home to mountain forests and alpine grasslands that may be at risk due to excessive N deposition. To establish the basis for ecology-based policies, there is a need to better understand the forest response to this atmospheric impact. To fill this gap, in this study, we measured N deposition (as bulk, wet, and throughfall fluxes of dissolved inorganic nitrogen) and air N gas concentrations from 2011 to 2013 at four Spanish holm oak (Quercus ilex) forests located in different pollution environments. One site was in an area of intensive agriculture, two sites were influenced by big cities (Madrid and Barcelona, respectively), and one site was in a rural mountain environment 40 km north of Barcelona. Wet deposition ranged between 0.54 and 3.8 kg N ha−1 year−1 for ammonium (NH4 +)-N and between 0.65 and 2.1 kg N ha−1 year−1 for nitrate (NO3 −)-N, with the lowest deposition at the Madrid site for both components. Dry deposition was evaluated with three different approaches: (1) a canopy budget model based in throughfall measurements, (2) a branch washing method, and (3) inferential calculations. Taking the average dry deposition from these methods, dry deposition represented 51–67% (reduced N) and 72–75% (oxidized N) of total N deposition. Canopies retained both NH4 +-N and NO3-N, with a higher retention at the agricultural and rural sites (50–60%) than at sites located close to big cities (20–35%, though more uncertainty was found for the site near Madrid), thereby highlighting the role of the forest canopy in processing N pollutant emissions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adon M, Galy-Lacaux C, Delon C et al (2013) Dry deposition of nitroben compounds (NO2, HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method. Atmos Chem Phys 13:11351–11374
Adriaenssens S, Hansen K, Staelens J et al (2012) Throughfall deposition and canopy exchange processes along a vertical gradient within the canopy of beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst). Sci Total Environ 420:168–182
Aguillaume L, Rodrigo A, Avila A (2016) Long-term effects of changing atmospheric pollution on throughfall, bulk deposition and streamwaters in a Mediterranean forest. Sci Total Environ 544:919–928
Aguillaume L, Izquieta-Rojano S, García-Gómez H, Elustondo D, Santamaría JM, Alonso R, Avila A (2017) Dry deposition and canopy uptake in Mediterranean holm-oak forest estimated with a canopy budget: a focus on N estimations. Atmos Environ 152:191–200
Ariño A, Gimeno B, de Zabalza AP, Ibáñez R, Ederra A, Santamaría J (2000) Influence of nitrogen deposition on plant biodiversity at Natura 2000 sites in Spain. Nitrogen Deposition and Natura 2000:140
Avila A, Rodà F (2012) Changes in atmospheric deposition and streamwater chemistry over 25 years in undisturbed catchments in a Mediterranean mountain environment. Sci Total Environ 434:18–27
Avila A, Molowny-Horas R, Gimeno BS, Peñuelas J (2010) Analysis of decadal time series in wet N concentrations at five rural sites in NE Spain. Water Air Soil Pollut 207:123–138
Balestrini R, Tagliaferri A (2001) Atmospheric deposition and canopy exchange processes in alpine forest ecosystems (northern Italy). Atmos Environ 35:6421–6433
Balestrini R, Arisci S, Brizzio MC et al (2007) Dry deposition of particles and canopy exchange: comparison of wet, bulk and throughfall deposition at five forest sites in Italy. Atmos Environ 41:745–756
Bobbink R, Hicks K, Galloway J, Spranger T et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 2:30–59
Boyce RL, Friedland AJ, Chamberlain CP, Poulson SR (1996) Direct canopy nitrogen uptake from N15 labeled wet deposition by mature red spruce. Canadian Journal Forest Research 26:1539–1547
Bytnerowicz A, Miller P, Olszyk DM, Dawson PJ, Fox CA (1987) Gaseous and particulate air pollution in the San Gabriel Mountains of southern California. Atmos Environ 21:1805–1814
Bytnerowicz A, Sanz MJ, Arbaugh MJ, Paddgett PE, Jones DP, Davila A (2005) Passive sampler for monitorin ambient nitric acid (HNO3) and nitrous acid (HNO2) concentrations. Atmos Environ 39:2655–2660
Bytnerowicz A, Johnson RF, Zhang L et al (2015) An empirical inferential method of estimating nitrogen deposition to Mediterranean-type ecosystems: the San Bernardino Mountains case study. Environ Pollut 203:69–88
Cape JN, Sheppard LJ, Crossley A, van Dijk N, Tang YS (2010) Experimental field estimation of organic nitrogen formation in tree canopies. Environ Pollut 158:2926–2933
De Schrijver A, Geudens G, Augusto L, Staelens J, Mertens J, Wuyts K, Gielis L, Verheyen K (2007) The effect of forest type on throughfall deposition and seepage flux: a review. Oecologia 153:663–674
De Vries W, Vel E, Reinds G et al (2003) Intensive monitoring of forest ecosystems in Europe: 1. objectives, set-up and evaluation strategy. For Ecol Manag 174:77–95
Dentener F et al (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344
Draaijers G, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258
Draaijers G, Erisman JW, van Leeuwen NFM et al (1997) The impact of canopy exchange on differences observed between atmospheric deposition and throughfall fluxes. Atmos Environ 31:387–397
Drapelova I (2013) Evaluation of deposition fluxes in two mountain Norway spruce stands with different densities using the extended canopy budget model. J For Sci 59:72–86
Duyzer JH, Dorsey JR, Gallagher MW, Pilegaard K, Walton S (2004) Oxidized nitrogen and ozone interaction with forests. II: multi-layer process-oriented modelling results and a sensitivity study for Douglas fir. Q J R Meteorol Soc 130:1957–1971
Enders G, Teichmann U (1986) GASDEP—gaseous deposition measurements of SO2, NOx, and O3 to a spruce stand: conception, instrumentation, and first results of an experimental project. In: Georgii HW (ed) Atmospheric pollutants in forest areas. Springer, Dordrecht
Endo T, Yagoh H, Sato K, Matsuda K, Hayashi K, Noguchi I, Sawada K (2011) Regional characteristics of dry deposition of sulfur and nitrogen compounds at EANET sites in Japan from 2003 to 2008. Atmos Environ 45:129–1267
Erisman JW, Beier C, Draaijers G, Lindberg S (1994) Review of deposition monitoring methods. Tellus 46:79–93
Fenn ME, Ross CS, Schilling SL et al (2013) Atmospheric deposition of nitrogen and sulfur and preferential consumption of nitrate in forests of the Pacific Northwest, USA. For Ecol Manag 302:240–253
Flechard CR, Nemitz E, Smith RI et al (2011) Dry deposition of reactive nitrogen to European ecosystems: a comparison of inferential models across the NitroEurope network. Atmos Chem Phys 11:2703–2728
Fondazione Salvatore Maugeri (2006) Instruction Manual for Radiello sampler. Edition 01/2006. http://www.radiello.com
Gaige E, Dail D, Hollinger D et al (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems 10:1133–1147
Gallagher M, Fontan J, Wyers P, Ruijgrok W et al (1997) Atmospheric particles and their interactions with natural surfaces. In: Slanina S (ed) Biosphere-atmosphere exchange of pollutants and trace substances. Springer, Dordrecht, pp 45–92
García-Gómez H (2016). Atmospheric concentration and deposition of reactive nitrogen in Spanish forests of Quercus ilex. PhD dissertation. Escuela Técnica Superior de Ingenieros Agrónomos. Universidad Politécnica de Madrid
García-Gómez H, Garrido J, Vivanco M et al (2014) Nitrogen deposition in Spain: modeled patterns and threatened habitats within the Natura 2000 network. Sci Total Environ 485:450–460
García-Gómez H, Aguillaume L, Izquieta-Rojano S et al (2016a) Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation. Environ Sci Pollut Res 23:6400–6413
García-Gómez H, Izquieta-Rojano S, Aguillaume L et al (2016b) Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors. Environ Pollut. doi:10.1016/j.envpol.2016.06.027
Garten CT Jr, Hanson PJ (1990) Foliar retention of 15N.nitrate and 15-N ammonium by red maple (Acer rubrum) and white oak (Quercus alba) leaves from simulated rain. Environmental Experimental Botany 30:333–342
Geßler A, Rienks M, Rennenberg H (2002) Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees. New Phytol 156:179–194
Granat L, Johnson C (1983) Dry deposition of SO2 and NOx in winter. Atmos Environ 17:191–193
Guerrieri R, Vanguelova E, Michalski G, Heaton TH, Mencuccini M (2015) Isotopic evidence for the occurrence of biological nitrification and nitrogen deposition processing in forest canopies. Glob Chang Biol 21:4613–4626
Hanson PJ, Lindberg SE (1991) Dry deposition of reactive nitrogen compounds: a review of leaf, canopy and non-foliar measurements. Atmos Environ 25:1615–1634
Harrison AF, Schulze ED, Gebauer G, Bruckner G (2010) Canopy uptake and utilization of atmospheric pollutant nitrogen. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems. Ecological studies, vol 142. Springer, Berlin
Hicks BB, Hosker RP, Meyers TP, Womack JD (1991) Dry deposition inferential measurement techniques—I. design and tests of a prototype meteorological and chemical system ofr determining dry deposition. Atmos Environ 25:2345–2359
Holland EA, Braswell BH, Sulzman J, Lamarque JF (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15:38–57
Horváth L (2003) Dry deposition velocity of PM2.5 ammonium sulfate particles to a Norway spruce forest on the basis of S and N balance estimations. Atmos Environ 37:4419–4424
Hosker RP, Lindberg SE (1982) Review: atmospheric deposition and plant assimilation of gases and particles. Atmos Environ 5:889–910
ICP-Forests Manual (2010) Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. UNECE ICP Forests Programme Coordinating Centre, Hamburg
Ignatova N, Dambrine E (2000) Canopy uptake of N deposition in spruce (Picea abies L. Karst) stands. Ann For Sci 57:113–120
Izquierdo R, Avila A (2012) Comparison of collection methods to determine atmospheric deposition in a rural Mediterranean site (NE Spain). J Atmos Chem 69:351–368
Izquieta-Rojano S, García-Gomez H, Aguillaume L et al (2016) Throughfall and bulk deposition of dissolved organic nitrogen to holm oak forests in the Iberian Peninsula: flux estimation and identification of potential sources. Environ Pollut 210:104–112
Johnson DW, Lindberg SE (1992) Atmospheric deposition and forest nutrient cycling: a synthesis of the integrated forest study, vol 91. Springer, Berlin
Li Y, Schichtel BA, Walker JT et al (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proceedings of the National Academy Sciences USA. doi:10.1073/pnas.1525736113
Llorens P, Domingo F (2007) Rainfall partitioning by vegetation under Mediterranean conditions. A review of studies in Europe. Journal of Hydrology 335:37–54
Lovett G, Lindberg S (1984) Dry deposition and canopy exchange in a mixed oak forest as determined by analysis of throughfall. J Appl Ecol 21:1013–1027
Lovett G, Lindberg S (1986) Dry deposition of nitrate to a deciduous forest. Biogeochemsitry 2:137–148
Meyers TP, Huebert BJ, Hicks BB (1989) HNO3 deposition to a deciduous forest. Bound-Layer Meteorol 49:395–410
Moreno G, Gallardo JF, Bussotti F (2001) Canopy modification of atmospheric deposition in oligotrophic Quercus pyrenaica forests of an unpolluted region (central-western Spain). For Ecol Manag 149:47–60
Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle? Biogeochemistry 57:99–136
Ochoa-Hueso R, Arróniz-Crespo M, Bowker MA et al (2014) Biogeochemical indicators of elevated nitrogen deposition in semiarid Mediterranean ecosystems. Environ Monit Assess 186:5831–5842
Padgett PE, Cook H, Bytnerowicz A, Heath RL (2009) Foliar loading and metabolic assimilation of dry deposited nitric acid air pollutants by trees. Journal Environmental Monitoring 11:75–84
Pan YP, Wang YS, Tang GQ, Wu D (2012) Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China. Atmos Chem Phys 12:6515–6535
Parker G (1983) Throughfall and stemflow in the forest nutrient cycle. Adv Ecol Res 13:57–133
Peñuelas J, Filella I (2001) Herbaria century record of increasing eutrophication in Spanish terrestrial ecosystems. Glob Chang Biol 7:427–433
Pérez N, Pey J, Castillo S, Viana M, Alastuey A, Querol X (2008) Interpretation of the variability of levels of regional background aerosols in the Western Mediterranean. Sci Total Environ 407:527–540
Pey J, Pérez N, Castillo S et al (2009) Geochemistry of regional background aerosols in the Western Mediterranean. Atmos Res 94:422–435
Puxbaum H, Gregori M (1998) Seasonal and annual deposition rates of sulphur, nitrogen and chloride species to an oak forest in north-eastern Austria (Wolkersdorf, 240 m ASL). Atmos Environ 32:3557–3568
Querol X, Mantilla E, Ruiz CR, Lopez-Soler A, Juan R (1998) Seasonal evolution of suspended particles around a large coal-fired power station: chemical characterization. Atmos Environ 32:719–731
Rodrigo A, Avila A (2002) Dry deposition to the forest canopy and surrogate surfaces in two Mediterranean holm oak forests in Montseny (NE Spain). Water Air Soil Pollut 136:269–288
Rodriguez-Puebla C, Encinas A, Nieto S, Garmendia J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian Peninsula. Int J Climatol 18:299–316
Salvador P, Artiñano B, Viana MM et al (2011) Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999-2008. Urban Environmental Pollution 4:198–208
Sparks JP (2009) Ecological ramifications of the direct foliar uptake of nitrogen. Oecologia 159:1–13
Stachurski A, Zimka JR (2002) Atmospheric deposition and ionic interactions within a beech canopy in the Karkonosze Mountains. Environ Pollut 1118:75–87
Staelens J, Houle D, De Schrijver A, Neirynck J, Verheyen K (2008) Calculating dry deposition and canopy exchange with the canopy budget model: review of assumptions and application to two deciduous forests. Water Air Soil Pollut 191:149–169
Sutton MA, Howard CM, Erisman JW et al (2011) The European nitrogen assessment: sources, effects and policy perspectives. Cambridge University Press, Cambridge
Thimonier A, Schmitt M, Waldner P, Rihm B (2005) Atmospheric deposition on Swiss long-term forest ecosystem research (LWF) plots. Environ Monit Assess 104:81–118
Ulrich B (1983) Interaction of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Springer, Dordrecht, pp 33–45
Uscola M, Villar-Salvador P, Oliet J, Warren CR (2014) Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two Mediterranean trees. Environ Exp Bot 104:34–43
Wesely ML, Hicks BB (2000) A review of the current status of knowledge on dry deposition. Atmos Environ 34:2261–2282
Zhang G, Zeng GM, Jiang YM et al (2006) Effects of weak acids on canopy leaching and uptake processes in a coniferous-deciduous mixed evergreen forest in central-south China. Water Air Soil Pollut 172:39–55
Zhang L, Cet R, O’Brien JM, Mihele C, Liang Z, Wiebe A (2009) Dry deposition of individual nitrogen species at eight Canadian rural sites. Journal Geophysical Research 114. doi:10.1029/2008JD010640
Zinke PJ (1967) Forest interpretation studies in the United States. In: Sopper WE, Lull HE (eds) International symposium on forest hydrology. Pergamon Press, Oxford, pp 137–161
Acknowledgements
The financial support from the Spanish Government projects EDEN (CGL2009-13188-C03-01/02/03) is fully acknowledged. This research was also funded by the project from Autonomous Government of Madrid AGRISOST-CM (P2013/ABI-2717) and by the European Projects ECLAIRE (FP7-ENV-2011/282910) and Life RESPIRA (LIFE13 ENV/ES/000417). CIEMAT work in this study was partially supported by an agreement between the Spanish Ministry of Agriculture, Food and Environment and CIEMAT on Critical loads and levels. The utilization of Tres Cantos monitoring site was possible thanks to an agreement between CIEMAT and Ayuntamiento de Madrid.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Gerhard Lammel
Rights and permissions
About this article
Cite this article
Avila, A., Aguillaume, L., Izquieta-Rojano, S. et al. Quantitative study on nitrogen deposition and canopy retention in Mediterranean evergreen forests. Environ Sci Pollut Res 24, 26213–26226 (2017). https://doi.org/10.1007/s11356-017-8861-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-017-8861-4