Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 11, pp 10272–10282 | Cite as

Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators

  • Marimuthu Govindarajan
  • Mohan Rajeswary
  • Sengamalai Senthilmurugan
  • Periasamy Vijayan
  • Naiyf S. Alharbi
  • Shine Kadaikunnan
  • Jamal M. Khaled
  • Giovanni Benelli
Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology

Abstract

A wide number of studies dealing with mosquito control focus on toxicity screenings of whole plant essential oils, while limited efforts shed light on main molecules responsible of toxicity, as well as their mechanisms of action on non-target organisms. In this study, GC-MS shed light on main essential oil components extracted from leaves of the Suriname cherry Eugenia uniflora, i.e., curzerene (35.7%), trans-β-elemenone (11.5%), and γ-elemene (13.6%), testing them on Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus larvae. Non-target toxicity experiments were carried out on four species of aquatic larvivorous organisms, including fishes, backswimmers, and waterbugs. The essential oil from E. uniflora leaves tested on An. subpictus, Ae. Albopictus, and Cx. tritaeniorhynchus showed LC50 of 31.08, 33.50, and 36.35 μg/ml, respectively. Curzerene, trans-β-elemenone, and γ-elemene were extremely toxic to An. subpictus (LC50 = 4.14, 6.13, and 10.53 μg/ml), Ae. albopictus (LC50 = 4.57, 6.74, and 11.29 μg/ml), and Cx. tritaeniorhynchus (LC50 = 5.01, 7.32, and 12.18 μg/ml). The essential oil from E. uniflora leaves, curzerene, trans-β-elemenone, and γ-elemene showed low toxicity to larvivorous fishes, backswimmers, and waterbugs, with LC50 ranging from 303.77 to 6765.56 μg/ml. Predator safety factor (PSF) ranged from 55.72 to 273.45. Overall, we believe that curzerene isolated from the essential oil from E. uniflora leaves can represent an ideal molecule to formulate novel mosquito larvicides, due to its extremely low LC50 on all tested mosquito vectors (4.14–5.01 μg/ml), which far encompasses most of the botanical pesticides tested till now. Notably, the above-mentioned LC50 did not damage the four aquatic predators tested in this study.

Keywords

Acute toxicity Biosafety Essential oil Eugenia uniflora Mosquitofish 

Notes

Acknowledgements

This Project was supported by King Saud University, Deanship of Scientific Research, College of Sciences Research Centre.  The authors would like to thank Professor and Head, Department of Zoology, Annamalai University for the laboratory facilities provided.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. Adams RP (2007) 4th Ed. Carol Stream, Illinois: Allured Publishing Corporation; Identification of e ssential oil components by gas chromatography/mass spectroscopyGoogle Scholar
  2. Aguilera L, Navarro A, Tacoronte JE, Leyva M, Marquetti MC (2003) Lethal effect of Cuban Myrtaceae on Aedes aegypti (Diptera Cuilicidae). Rev Cubana Med Trop 55(2):100–104Google Scholar
  3. AlShebly MM, AlQahtani FS, Govindarajan M, Gopinath K, Vijayan P, Benelli G (2017) Toxicity of ar-curcumene and epi-β-bisabolol from Hedychium larsenii (Zingiberaceae) malaria, chikungunya and St. Louis encephalitis mosquito vectors. Ecotox Environ Safe 137:149–157CrossRefGoogle Scholar
  4. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472CrossRefGoogle Scholar
  5. Amer A, Mehlhorn H (2006b) Repellency effect of forty one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490CrossRefGoogle Scholar
  6. Arai I, Amagaya S, Komatsu Y, Okada M, Hayashi T, Kasai M, Arisawa M, Momose Y (1999) Improving effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice. J Ethnopharmacol 68:307–314CrossRefGoogle Scholar
  7. Araújo ECC, Silveira ER, Lima MAS, Neto MA, Andrade IL, Lima MAA, Santiago GMP, Mesquita ALM (2003) Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. J Agric Food Chem 51:3760–3762CrossRefGoogle Scholar
  8. Auricchio MT, Bacchi EM (2003) Folhas de Eugenia uniflora L. (pitanga): Propriedades farmacobotânicas, químicase farmacológicas. Rev Inst Adolfo Lutz 62:55–61 (In Portuguese)Google Scholar
  9. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805CrossRefGoogle Scholar
  10. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212CrossRefGoogle Scholar
  11. Benelli G (2016a) Plant-mediated biosynthesis of nanoparticles as an emerging tool against mosquitoes of medical and veterinary importance: a review. Parasitol Res 115:23–34CrossRefGoogle Scholar
  12. Benelli G (2016b) Green synthesized nanoparticles in the fight against mosquito-borne diseases and cancer – a brief review. Enzym Microb Technol 95:58–68CrossRefGoogle Scholar
  13. Benelli G (2017) Commentary: data analysis in bionanoscience – issues to watch for. J Clust Sci doi. doi: 10.1007/s10876-016-1143-3 Google Scholar
  14. Benelli G, Govindarajan M (2017) Green-synthesized mosquito oviposition attractants and ovicides: towards a nanoparticle-based “lure and kill” approach? J Clust Sci doi. doi: 10.1007/s10876-016-1088-6
  15. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754CrossRefGoogle Scholar
  16. Benelli G, Lo Iacono A, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer: an overlooked connection? Parasitol Res 115:2131–2137CrossRefGoogle Scholar
  17. Benelli G, Pavela R, Maggi F, Petrelli R, Nicoletti M (2017a) Commentary: making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J Clust Sci doi. doi: 10.1007/s10876-016-1131-7 Google Scholar
  18. Benelli G, Pavela R, Iannarelli R, Petrelli R, Cappellacci L, Cianfaglione K, Afshar FH, Nicoletti M, Canale A, Maggi F (2017b) Synergized mixtures of Apiaceae essential oils and related plant-borne compounds: larvicidal effectiveness on the filariasis vector Culex quinquefasciatus say. Ind Crop Prod 96:186–195CrossRefGoogle Scholar
  19. Benelli G, Rajeswary M, Govindarajan M (2017c) Towards green oviposition deterrents? Effectiveness of Syzygium lanceolatum (Myrtaceae) essential oil against six mosquito vectors and impact on four aquatic biological control agents. Environ Sci Poll Res doi. doi: 10.1007/s11356-016-8146-3 Google Scholar
  20. Campolo O, Romeo FV, Algeri GM, Laudani F, Malacrinó A, Timpanaro N, Palmeri V (2016) Larvicidal effects of four citrus peel essential oils against the arbovirus vector aedes albopictus (Diptera: Culicidae). J Econ Entomol 109(1):360–365Google Scholar
  21. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544CrossRefGoogle Scholar
  22. Cheng SS, Liu JY, Tsai KH, Chen WJ, Chang ST (2004) Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem 52:4395–4400Google Scholar
  23. Cheng SS, Huang CG, Chen YJ, Yu JJ, Chen WJ, Chang ST (2009) Chemical compositions and larvicidal activities of leaf essential oils from two eucalyptus species. Bioresour Technol 100:452–456CrossRefGoogle Scholar
  24. Consolini AE, Baldini OAN, Amat AG (1999) Pharmacological basis for the empirical use of Eugenia uniflora L. (Myrtaceae) as antihypertensive. J Ethnopharmacol 66:33–39CrossRefGoogle Scholar
  25. Deo PG, Hasan SB, Majumdar SK (1988) Toxicity and suitability of some insecticides for household use. Int Pest Control 30:118–129Google Scholar
  26. Elbana SM (2006) Larvicidal effects of Eucalyptus extract on the larvae of Culex pipiens Mosquito. Int J Agri Biol 8(6):896–897Google Scholar
  27. Finney DJ (1971) Probit analysis. Cambridge University Press, London, pp 68–72Google Scholar
  28. Govindarajan M (2010) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. Ex Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med 3(11):874–877CrossRefGoogle Scholar
  29. Govindarajan M (2011) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111CrossRefGoogle Scholar
  30. Govindarajan M, Benelli G (2016a) α-humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus and Culex tritaeniorhynchus (Diptera: Culicidae). Parasitol Res 115:2771–2778CrossRefGoogle Scholar
  31. Govindarajan M, Benelli G (2016b) Artemisia absinthium-borne compounds as novel larvicides: effectiveness against six mosquito vectors and acute toxicity on non-target aquatic organisms. Parasitol Res 115:4649–4661CrossRefGoogle Scholar
  32. Govindarajan M, Benelli G (2016c) Eco-friendly larvicides from Indian plants: effectiveness of lavandulyl acetate and bicyclogermacrene on malaria, dengue and Japanese encephalitis mosquito vectors. Ecotox Environ Safe 133:395–402CrossRefGoogle Scholar
  33. Govindarajan M, Sivakumar R (2014) Larvicidal, ovicidal, and adulticidal efficacy of Erythrina indica (lam.) (family: Fabaceae) against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 113(2):777–791CrossRefGoogle Scholar
  34. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2012) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032CrossRefGoogle Scholar
  35. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2013a) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134(1):7–11CrossRefGoogle Scholar
  36. Govindarajan M, Sivakumar R, Rajeswary M, Veerakumar K (2013b) Mosquito larvicidal activity of thymol from essential oil of Coleus aromaticus Benth. against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Parasitol Res 112(11):3713–3721Google Scholar
  37. Govindarajan M, Rajeswary M, Benelli G (2016a) Chemical composition, toxicity and effects on non-target organisms of Pinus kesiya essential oil: an eco-friendly larvicide against mosquito vectors. Ecotox Environ Safe 129:85–90CrossRefGoogle Scholar
  38. Govindarajan M, Rajeswary M, Hoti SL, Bhattacharyya A, Benelli G (2016b) Eugenol, α-pinene and β-caryophyllene from Plectranthus barbatus essential oil as ecofriendly larvicides against malaria, dengue and Japanese encephalitis mosquito vectors. Parasitol Res 115:807–815CrossRefGoogle Scholar
  39. Govindarajan M, Rajeswary M, Benelli G (2016c) δ-Cadinene, Calarene and δ-4-Carene from Kadsura heteroclita essential oil as novel larvicides against malaria, dengue and filariasis mosquitoes. Comb Chem High Throughput Screen. doi: 10.2174/1386207319666160506123520
  40. Govindarajan M, Rajeswary M, Arivoli S, Samuel T, Benelli G (2016d) Larvicidal and repellent potential of Zingiber nimmonii (J. Graham) Dalzell (Zingiberaceae) essential oil: an eco-friendly tool against malaria, dengue and lymphatic filariasis mosquito vectors? Parasitol Res 115(5):1807–1816CrossRefGoogle Scholar
  41. Govindarajan M, Rajeswary M, Hoti SL, Benelli G (2016e) Larvicidal potential of carvacrol and terpinen-4-ol from the essential oil of Origanum vulgare (Lamiaceae) against Anopheles stephensi, Anopheles subpictus, Culex quinquefasciatus and Culex tritaeniorhynchus (Diptera: Culicidae). Res Vet Sci 104:77–82CrossRefGoogle Scholar
  42. Gu HJ, Cheng SS, Huang CG, Chen WJ, Chang ST (2009) Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitol Res 105:1455–1458CrossRefGoogle Scholar
  43. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391CrossRefGoogle Scholar
  44. Kyung KH, Fleming HP (1997) Antimicrobial activity of sulfur compounds derived from cabbage. J Food Prot 60:67–71CrossRefGoogle Scholar
  45. Lee MH, Chiou JF, Yen KY, Yang LL (2000) EBV DNA polymerase inhibition of tannins from Eugenia uniflora. Cancer Lett 154:131–136CrossRefGoogle Scholar
  46. Leyva M, Tiomno O, Tacoronte JE, Marquetti MC, Montada D 2012 Essential plant oils and insecticidal activity in Culex quinquefasciatus, Insecticides - Pest Engineering, In Tech; 2012. Available: http://www.intechopen.com/books/insecticides-pest-engineering/essential- plantoils-and insecticidal-activity-in Culex-quinquefasciatus
  47. Lorenzi H, Matos FJA (2002) Plantas Medicinais no Brasil Nativas e Exóticas, 2nd edn. Instituto Plantarum de Estudos da Flora Ltda, Nova Odessa-SP, Brazil, p 512 (In Portuguese) Google Scholar
  48. Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H (2007) Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc 23:299–303CrossRefGoogle Scholar
  49. Lucia A, Juan LW, Zerba EN, Harrand L, Marc M, Masuh HM (2012) Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae). Parasitol Res 110(5):1675–1686CrossRefGoogle Scholar
  50. Maheswaran R, Ignacimuthu S (2012) A novel herbal formulation against dengue vector mosquitoes Aedes aegypti and Aedes albopictus. Parasitol Res 110:1801–1813CrossRefGoogle Scholar
  51. Maheswaran R, Ignacimuthu S (2013) Bioefficacy of essential oil from Polygonum hydropiper L. against mosquitoes, Anopheles stephensi and Culex quinquefasciatus. Ecotox Environ Safe 97:26–31CrossRefGoogle Scholar
  52. Naqqash MN, Gökçe A, Bakhsh A, Salim M (2016) Insecticide resistance and its molecular basis in urban insect pests. Parasitol Res 115:1363–1373CrossRefGoogle Scholar
  53. Negahban M, Moharramipour S (2007) Fumigant toxicity of Eucalyptus intertexta, Eucalyptus sargentii and Eucalyptus camaldulensis. J Appl Entomol 131(4):256–261CrossRefGoogle Scholar
  54. Papachristos DP, Stamopoulos DC (2002) Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthosecelides obtectus (say). J Stored Prod Res 38:117–128CrossRefGoogle Scholar
  55. Pavela R (2009) Larvicidal property of essential oils against Culex quinquefasciatus say (Diptera: Culicidae). Ind Crop Prod 30:311–315CrossRefGoogle Scholar
  56. Pavela R (2015a) Essential oils for the development of eco-friendly mosquito larvicides: a review. Ind Crop Prod 76:174–187CrossRefGoogle Scholar
  57. Pavela R (2015b) Acute toxicity and synergistic and antagonistic effects of the aromatic compounds of some essential oils against Culex quinquefasciatus say larvae. Parasitol Res 114:3835–3853CrossRefGoogle Scholar
  58. Pavela R, Benelli G (2016a) Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors – a review. Exp Parasitol 167C:103–108CrossRefGoogle Scholar
  59. Pavela R, Benelli G (2016b) Essential oils as eco-friendly biopesticides? Challenges and constraints. Tr Plant Sci 21(12):1000–1007CrossRefGoogle Scholar
  60. Pavela R, Govindarajan M (2016) The essential oil from Zanthoxylum monophyllum a potential mosquito larvicide with low toxicity to the non-target fish Gambusia affinis. J Pest Sci. doi: 10.1007/s10340-016-0763-6 Google Scholar
  61. Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555CrossRefGoogle Scholar
  62. Rajaganesh R, Murugan K, Panneerselvam C, Jayashanthini S, Aziz AT, Roni M, Suresh U, Trivedi S, Rehman H, Higuchi A, Nicoletti M, Benelli G (2016) Fern-synthesized silver nanocrystals: towards a new class of mosquito oviposition deterrents? Res Vet Sci 109:40–51CrossRefGoogle Scholar
  63. Savitha SN, Vinaya S, Nadikere JS (2014) Relative toxicity of leaf extracts of Eucalyptus globulus and Centella asiatica against mosquito vectors Aedes aegypti and Anopheles stephensi. J Insect Article ID 985463, 7Google Scholar
  64. Senthil-Nathan S (2007) The use of Eucalyptus tereticornis Sm. (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour Technol 98(9):1856–6018CrossRefGoogle Scholar
  65. Simon Pierre DY, Okechukwu EC, Nchiwan NE (2014) Larvicidal and phytochemical properties of Callistemon rigidus R. Br. (Myrtaceae) leaf solvent extracts against three vector mosquitoes. J Vector Born Dis 51:216–223Google Scholar
  66. Singh RK, Dhiman RC, Mittal PK (2007) Studies on mosquito larvicidal properties of Eucalyptus citriodora Hook (family-Myrtaceae). J Commun Dis 39(4):233–236Google Scholar
  67. Sivagnaname N, Kalyanasundaram M (2004) Laboratory evaluation of methanolic extract of Atlantia monophylla (family: Rutaceae) against immature stages of mosquitoes and non-target organisms. Mem Inst Oswaldo Cruz 99(1):115–118CrossRefGoogle Scholar
  68. Traboulsi AF, Taoubi K, El-Haj S, Bessiere JM, Salma R (2002) Insecticidal properties of essential plant oils against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 58:491–495CrossRefGoogle Scholar
  69. Trigg JK (1996) Valuation of a eucalyptus-based repellent against Anopheles spp. in Tanzania. J Am Mosq Control Assoc 12:243–246Google Scholar
  70. Vinayachandra S, Shwetha R, Chandrashekar KR (2011) Larvicidal activities of Knema attenuata (Hook. f. & Thomson) Warb. (Myristicaceae) extracts against Aedes albopictus Skuse and Anopheles stephensi Liston. Parasitol Res 109:1671–1676CrossRefGoogle Scholar
  71. Ward M, Benelli G (2017) Avian and simian malaria: do they have a cancer connection? Parasitol Res. doi: 10.1007/s00436-016-5352-3 Google Scholar
  72. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, 4prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva WHO/CDS/WHOPES/GCDPP/1.3. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Marimuthu Govindarajan
    • 1
  • Mohan Rajeswary
    • 1
  • Sengamalai Senthilmurugan
    • 1
  • Periasamy Vijayan
    • 1
  • Naiyf S. Alharbi
    • 2
  • Shine Kadaikunnan
    • 2
  • Jamal M. Khaled
    • 2
  • Giovanni Benelli
    • 3
  1. 1.Unit of Vector Control, Phytochemistry and Nanotechnology, Department of ZoologyAnnamalai UniversityAnnamalainagarIndia
  2. 2.Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations